The life cycle and fitness domain of gregarine (Apicomplexa) parasites

J. David Logan a,∗, John Janovy Jr. b, Brittany E. Bunker a

a Department of Mathematics, University of Nebraska Lincoln, Lincoln, NE 68588-0130, United States
b School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE 68588-0130, United States

A R T I C L E I N F O
Article history:
Received 18 November 2011
Received in revised form 9 March 2012
Accepted 12 March 2012

Keywords:
Parasites (Apicomplexa)
Gregarine
Population dynamics
Fitness

A B S T R A C T
Theoretical demographic models with accompanying experimental programs provide an important framework to study the life history of organisms. In this paper we examine the fitness characteristics of gregarine parasites (Apicomplexa) and how these evolutionary long-lived parasites are shaped by their own life cycle stages inside and outside a definitive insect host. Although gregarines have been investigated in experimental works, their fit and population characteristics have not been subject to modeling efforts to help understand their longevity or interactions with their host species. We develop a dynamic, mechanistic population model represented by a system of two differential equations for two of the parasite stages: the mature parasite, or trophont, inside a definitive insect host, and the infectious oocyst stage in the water environment of the host. In contrast to many classical macroparasite models, the force of infection between oocysts and hosts is of sigmoid type. Inside the host, production of the water born infectious state is modeled by linear production rate in the trophont population with a density-independent trophont mortality. We examine stability of model’s equilibria for different parameter values and different host populations. This leads to the definition of a fitness parameter that acts as a bifurcation parameter for the model. The model shows good cause for the establishment and long-time persistence of this common, widespread parasite. It is parameterized by extensive data gathered at Cedar Point Biological Station, and numerical calculations based on those parameters illustrate the dynamics. Possible applications include parasite control in aquacultures.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Parasitism is perhaps the most common way of life on Earth because every species of plant and animal that has been studied seriously has been shown to be parasitized by at least one, and often several, non-related species of protists, fungi, plants, or animals (Roberts and Janovy, 2009). Host–parasite systems are enormously varied with respect to modes of transmission, physiological relationships between species, and infection sites, and many are of serious economic importance. Thus it is not surprising that both experimental and theoretical research on host–parasite interactions is extensive. However, the parasite species examined in this paper have not been approached from a modeling viewpoint in spite of many experimental studies.

In this paper we focus on macroparasites and their insect hosts. In contrast to microparasites like viruses and bacteria, macroparasites have longer generations times, are larger, have at least one life cycle stage outside the definitive host, and do not multiply in the infective stage within the host. Good examples of macroparasites include helminths such as tapeworms and arthropods such as fleas and ticks. Typically, macroparasite infections are aggregated, with most individual parasites occurring in a relative few host individuals and a large number of hosts being either lightly- or non-infected. Consequently, macroparasite populations often are described by negative binomial distributions in which variance-to-mean ratios are large, and quantitative models most often focus on parasite infrapopulations (number of parasites per host) instead of prevalence (fraction of hosts infected) (Nodvold et al., 2002; Pal and Lewis, 2004).

Host–parasite interactions in aquatic environments have not been modeled to the same extent as terrestrial ones of economic importance, but within the past few decades, with growing importance of aquaculture, efforts to control disease vectors, and impact of climate change, there has been increasing interest in such systems (Milner and Patton, 1999; Marcgliese, 2001; Esteva et al., 2006; Fenton et al., 2006; Revie et al., 2007). Parasites vary considerably in their dependence upon aquatic environments, ranging, for example, from trematodes that require mollusks as first intermediate hosts and live for a short time outside their hosts, to malarial parasites transmitted by vectors with aquatic life cycle stages. Aside from their economic importance, therefore, aquatic hosts offer many opportunities to explore avenues for, and constraints on, evolutionary change (Bolek and Janovy, 2007a,b). And among the most common and diverse of host–parasite systems
in aquatic environments are ones involving invertebrates and the so-called “gregarines” (Levine, 1988; Clopton, 2000).

Gregarine parasites (phylum Apicomplexa; class Conoidasida; order Eugregarinorida) are large, single-celled, eukaryotes that are transmitted by oocysts ingested by a host. All invertebrate phyla have been reported as hosts for gregarines, but they are most numerous in arthropods and annelids. Beetles alone (order Coleoptera) are infected with one to two species of gregarine per host species, leading to a reasonable estimate of approximately 500,000 gregarine species in coleopterans. Damselflies and dragonflies (order Odonata; “odonates”) also have a rich gregarine fauna, with several species often occurring in single host species in a single collection site (Clopton et al., 1993; Percival et al., 1995). Differences in larval and adult odonate habitats, prey species, behaviors (including sex-specific mating behaviors), and potential for geographic distribution, as well as differences in parasite species’ structure and development, all provide rich opportunities for using these insects as model systems for studying macroparasite population dynamics, especially in an evolutionary context.

A typical gregarine life cycle is direct, with numerous developmental stages both inside and outside the hosts (Fig. 1). Hosts ingest oocysts, containing infective sporozoites, which attach to or penetrate hosts’ intestinal epithelium cells. Subsequent growth stages known as trophozoites, or trophonts, eventually detach from the epithelium and form associations with parasite cells of different mating types, thus becoming gamonts, which undergo syzygy and secrete a gametocyst wall. Gametocysts are shed into the environment and the contained gamonts undergo schizogony, forming gametes, which unite, forming zygotes inside. These zygotes then secrete an oocyst wall and go through zygotic meiosis to form haploid infective sporozoites, which are then released from the gametocyst by a variety of mechanisms known collectively as dehiscence. A gametocyst produces several thousand oocysts, each containing about eight sporozoites.

This paper reflects our efforts to establish insect–gregarine systems as models for host–parasite dynamics, and especially to inspire comparative work leading to evolutionary hypotheses. The aim is to understand factors affecting parasite fitness in nature, with special focus on the interplay among basic parameters of reproduction rates, infection rates, mortality, and host populations. One key assumption is that the host population is constant. This assumption is not an uncommon one in infectious disease models (Anderson and May, 1978; Dobson, 1989; Dobson and Hilton, 1992; Mangel, 2006). We regard the constant host population as a parameter and we investigate the fitness properties of the parasites in terms of bifurcations associated with that parameter. In this context, we also assume that damselflies are not affected by gregarines, a position consistent both with the idea that well-adapted parasites are relatively harmless to their hosts (Nowak, 2006), and with studies that demonstrate little if any negative impact on insect hosts by Eugregarinarorida (see Klingenberg et al., 1997; Hecker et al., 2002; Canales-Lazcano et al., 2005; Rodriguez and Omoto, 2007). This property is in stark contrast to some macroparasite models.

We track two parasite stages, the free-living infectious stage (oocysts), and trophonts inhabiting the definitive host (larval Ischnura verticalis, Odonata, Coenagrinidae). Our model represents a simplification of classical models such as those presented or reviewed by Anderson and May (1978), Dobson (1989), Dobson and Hilton (1992), Mangel (2006), and many others. One difference between our model and others is that although our parasite loads are strongly clumped, or negative binomially distributed, we do not use a traditional pairing probability to determine the prevalence of pairings; because gregarine mating behavior is not fully understood, we adopt a more mechanistic assumption of reproduction.

Our philosophy reflects that eloquently expressed by Maynard-Smith (1974, p. 35), namely, that the value of a theoretical population model is not in its precise description of the biological situation or in its ability, or inability, to predict population abundances exactly. What we do ask is what kind of change in the behavior of our model is made by particular changes in parameters; the assumption is that a comparable change will occur in the behavior of a real biological system. This brings up the issue of structural stability of the model with respect to changes in parameters. We want to know which parameters are critical and which are not. Therefore, a common approach is to select a fixed set of baseline parameters and perform a simulation of the dynamics; the magnitude of the change is measured from the baseline.

In summary, we want to understand the fitness characteristics and longevity of gregarine parasites and how they are shaped by their own life stages inside and outside a definitive insect host. The population model is a system of differential equations for the parasite stages (the trophonts in the definitive host and the free-living infectious oocysts), and we examine its possible equilibria under change of key life history parameters. A stability analysis leads to values, among them the basic reproductive number, that characterize population fitness and give good cause for the establishment and long time permanence of these common parasites. The model is parameterized by extensive data gathered at Cedar Point Biological Station in western Nebraska, and numerical calculations and bifurcation analysis based on those parameters illustrate the dynamics.

The plan of the paper is to introduce the model equations (Section 2) with reasonable justifications for our assumptions, and then examine the model’s predictions regarding equilibria and stability (Section 3). In Section 4 we present simulations based on specific parameter values taken from our experimental work and the accompanying literature. The final section contains an analytical stability analysis and other mathematical features of the model.

2. Model formulation

In this section we develop a mechanistic population model of host–parasite interactions in a damselfly larva–gregarine system.
The simplified gregarine life cycle is shown in Fig. 2. In a water environment the larval hosts ingest infective oocysts, which then exoporous to 8 sporozoites that attach to or penetrate hosts’ intestinal epithelial cells. A gametocyst may produce several thousand oocysts.

In epidemiological language, the gregarine life cycle is characterized as direct. There are four items we require for a model: host population size, adult parasite (trophont) population size, infectious parasite oocyst population size, and in some cases, the distribution of the adult parasites in the host. The two distinct parasite populations, oocysts and adults, occupy separate habitats (aquatic and inside the host); both are controlled by immigration and mortality. An emigration process also affects the oocysts. Technically, there is no true “birth” process because birth of an oocyst does not directly affect the adult population; an oocyst can be regarded as an immigrant into the pool of the free-living oocyst community. From a modeling viewpoint, confronting these issues with data is difficult; simply, it is often impossible to obtain accurate data from experiments, in particular infection rates.

The model we develop tracks trophonts inside the definitive host and oocysts in the environment. We denote populations of these stages by \(P(t) \) and \(C(t) \), respectively, where \(t \) is time given in days. Both \(P \) and \(C \) are measured in units of ‘per host’. Therefore, we think of \(P(t) \) as the average parasite load. We let \(H \) denote the constant number of host. Therefore, there is no mortality of trophonts caused by host deaths. Further, we ignore time delays and any abiotic effects.

The same complex life cycle issues apply to most all macroparasite models: the infection, or transmission, rate of the infective stages, the production rate of infective stages by adults inside the host, and the mortality of both the mature parasites and the external infective stages. All require constitutive assumptions about the mechanisms involved. As in many parasite models, gregarines appear to have a low infection probability, but it is balanced by a high productivity to maintain a suitable level of fitness.

2.1. Infection transmission

The contact rate between infective agents (oocysts) in the water environment and insect hosts can be modeled in many ways. Often this is the most difficult part of the model because of measurements of oocyst populations and contact rates are difficult or impossible. In the next few paragraphs we summarize key approaches and justify our choices.

Deterministic models are mechanistic, requiring the specification of the effective contact rate between oocysts and hosts, and the fraction of those contacts that result in a mature, host-inhabiting adult. If \(c \) is the total number of oocysts in the environment, then the simplest model for the rate of effective contacts would be \(\beta \), where \(\beta \) is the contact rate. Then, up to eight infective sporozoites emerge from each ingested oocyst, and a fraction \(\sigma \) of those survive and establish mature trophonts. The transmission coefficient \(a \) is by \(a = 8\sigma \beta \), which leads to the mass-action transmission rate \(acH \), where \(a \) is the effective transmission coefficient. The quantity \(\beta(c) = ac \) is the force of infection. Unfortunately, this simple mass-action type of infection rate does not yield appropriate dynamics in a model because it couples with a linear production rate (strongly supported by our field data), leading only to an extinct, stable persistent state. Alternately, one can argue that the force of infection should be a saturating function, for example, is a type II (Holling) or type III (sigmoid) functional response. Another phenomenological form of the force of infection could be chosen from the zeroth term of a negative binomial distribution. [Escapement models of this sort occur often in host–parasitoid equations as a stabilizing mechanism, where parasitoids are assumed to search in a heterogeneous environment; e.g., see Britton (2003), pp. 48–53, for a simple discussion.]

From a stochastic viewpoint, the encounter between hosts and oocysts is a random event. Models of encounter rates are often defined by Poison or Poisson-like processes, where the host ingests a single oocyst, or several oocysts, at random intervals of time. Although a Poisson process can be shown to lead to a negative binomial distribution of parasites in hosts when the rate parameter is gamma-distributed (e.g., see Mangel, 2006), it does not model our data. Our collected field data show that the average parasite load does not increase over time in damselfly larvae, suggesting perhaps that parasites are contacted in ‘clumps’ rather than one at a time. This would lead to a compound Poisson process, where the number of parasites ingested in the interval \([0, t]\) is

\[
X(t) = \sum_{j=0}^{N(t)} Y_j,
\]

where \(N(t) \) is a Poisson process and the \(Y_j \) are nonnegative i.i.d. random variables representing the number of infective oocysts taken in one encounter. (See, for example, Tallis and Leyton, 1969, who couple this randomness with the probability of the infectious stage becoming established and mature in the host.) This strategy, as applied to our data, is a topic of an ongoing study.

In the present paper we model the infection transmission process deterministically by a sigmoid function

\[
H(\frac{mc}{T} + c^2),
\]

where \(T \) is the half-saturation, \(m \) is the saturation, and \(c \) is effective transmission coefficient. The sigmoid response is justified by measurements of feeding rates of certain insect stages; this is discussed in Section 4 in the context of parameter identification. Assuming a density-independent mortality of oocysts and a linear production rate we obtain the basic model equation

\[
\frac{dc}{dt} = -dc - ac H \frac{c^2}{T + c^2} + bp,
\]

where \(p \) is the total number of trophonts, \(b \) is the production rate, and \(a = am \), which we call the transmission. This linear production rate, as we observe later, has substantial support from our field data, as well as from the data of others.

The rate of change of trophont numbers is the rate they are established from oocyst infection rate minus the mortality rate.
Assuming density-independent mortality leads to the model equation
\[
\frac{dp}{dt} = -\mu p + \alpha H \frac{c^2}{p^2 + c^2}.
\] (2)

We point out, in contrast to most models, in this insect/gregarine system there is no evidence of parasite mortality induced by host mortality or effect of a host immune system response.

Introducing per host variables \(P = p/H\) and \(C = c/H\) and substituting into equations (1) and (2) gives our working model
\[
\frac{dC}{dt} = \beta P - dC - \alpha \frac{C^2}{y^2 + C^2},
\]
\[
\frac{dp}{dt} = -\mu p + \alpha \frac{C^2}{y^2 + C^2},
\]

where \(y = \sqrt{y}/H\). For reference, Table 1 defines the basic quantities in the transmission process and their dimensions. Note that the host population has been scaled out of the final model.

2.2. Production rate

In the next section we analyze the properties of the model, and in the following section we discuss in detail the confrontation of the model with data. First, however, we comment on the assumed linear production rate, in contrast to some standard models in the literature.

The infective oocysts are increased by the mating of trophons through the gametogenesis process, and they are decreased by natural mortality in the environment and ingestion by the hosts. The production rate of oocysts per host is generally given by \(B(P)\), which depends on the trophont population. It has been well documented, especially in the case of schistosomiasis, that an important issue is how mature males and females pair. It seems clear that not all of the trophons will pair; some of the mature parasites will die, some will be washed out of the host’s gut, and some will not be able find a mate. Details of this pairing model, based on the probability distribution of parasites per host, are discussed thoroughly in May (1977), Bradley and May (1978), and Anderson and May (1978). As in many other macroparasite infections, our dissections show a strong negative binomial distribution of trophons in their definitive damselfly hosts. In the case of gregarines, trophons are monogamous, forming a single pair, but it is difficult, if not impossible, to identify their sexual types prior to mating. If we assume, however, that the sexual types of mature trophons are negative binomially distributed together (rather than separately) with parameters \(P\) and \(k\) (\(P\) is the average trophont load and \(k\) is the clumping parameter of Bradley and May (1978), or the negative binomial exponent), the probability argument of Bradley and May (1978) may be applied. The probability that a given host has \(i\) parasites of mating type 1 and \(j\) females of mating type 2 is
\[
Pr(i,j|P,k) = \frac{(1-a)^i \Gamma(i+j+k)(a/2)^{\Gamma(i+j)/2}/\Gamma(i+j+k)j!}{1-(1-a)^{i+k}}, \quad a = \frac{P}{P+k}.
\]

The probability of pairing is then given by
\[
\psi(P, k) = 1 - \frac{(1-a)^1}{2\pi} \int_0^{2\pi} (1 - \cos 2\theta)^k d\theta.
\] (3)

This integral expression must be calculated numerically for most parameter values. The average number of pairs formed is therefore
\[
\frac{1}{2} P \psi(P, k).
\]

What is significant in our model regarding (3) is the shape of the plots of \(\psi\) vs. \(P\) for different values of the clumping parameter \(k\). In the limit as \(k \to \infty\), the probability \(\psi\) approaches a Poisson distribution, which plots as a type II (Holling) response saturating at 1. For \(k > 1\), which is the case of clumped distributions (where the variance is much larger than the mean), the probability \(\psi\) again plots as a type II response. This gives reason to assume, mechanistically, that the probability of pairing can be modeled by a function of the type
\[
\psi(P, k) = \frac{P}{y + P},
\]

where \(y\) is the half-saturation. Therefore, the rate of production of oocysts would be, in this case,
\[
B(P) = \frac{1}{2} bP \Psi(P, k),
\]

where \(b\) number of oocysts produced per gametocyst. This conclusion, however, does not conform with our measurements (Bunker et al., submitted for publication) or those of Schwank (2004), both of whom measure the oocyst production \(B(P)\) as a linear function of \(P\).

We summarize the key assumptions of the model, which are based on our, and other’s, experimental data.

1. There is no evidence in gregarines that hosts are affected by their presence or that there is a host immune system response.
2. The mortalities of trophons and oocysts are density-independent.
3. The infection rate between oocysts and hosts is given by sigmoid function of the oocyst population. The host population is constant.
4. The production rate of infectious oocysts is a linear function of the mature trophon population.
5. Abiotic effects are not included.

3. Equilibrium analysis

We now examine the equilibria in our model and the conclusions concerning its bifurcation properties. So as not to interrupt the flow of modeling discussion, many of the details of the mathematical analysis may be found in the final section of the paper.

From the previous section, the model equations are
\[
\frac{dC}{dt} = \beta P - dC - \alpha \frac{C^2}{y^2 + C^2},
\] (4)
\[
\frac{dp}{dt} = -\mu p + \alpha \frac{C^2}{y^2 + C^2}.
\] (5)

The isolines, or the set of points \(C, P\) in the CP-phase plane where \(C = 0\) and \(P = 0\), are given by, respectively,
\[
P = \frac{1}{b} \left(a \frac{C^2}{y^2 + C^2} \right), \quad (C \text{ isoine})
\] (6)
Multiplying equilibrium.

\[R = \frac{\alpha C^2}{\mu \gamma^2 + C^2} \]

(Pisocline)

Equilibria are the intersections of these two isoclines. Both have a sigmoid shape with the \(C \) isocline gradually increasing, linearly, as \(C \to \infty \). Clearly, \(P^* = C = 0 \), which represents extinction, is one equilibrium. Then, equating the two isoclines and canceling \(C \) (corresponding to the extinction state) gives

\[\frac{1}{b} \left(\frac{d + \alpha C}{\gamma^2 + C^2} \right) = \frac{\alpha C}{\mu \gamma^2 + C^2}. \]

Multiplying by \(\gamma^2 + C^2 \) and rearranging yields a quadratic equation for \(C \):

\[C^2 + \frac{\alpha}{d} \left(1 - \frac{b}{\mu} \right) C + \gamma^2 = 0. \]

Introducing the parameter

\[R = \frac{\alpha}{2\gamma d} \left(\frac{b}{\mu} - 1 \right), \]

we can write the roots, or equilibrium values of \(C \), as

\[C^* = \gamma \left(R \pm \sqrt{R^2 - 1} \right). \]

Correspondingly, the equilibrium values of \(P \) are

\[P^* = \frac{\alpha}{\mu} \frac{C^2}{\gamma^2 + C^2}. \]

Note that \(R > 0 \) because the reproduction rate is much larger than the mortality rate \(\mu \). There are three cases: if \(R < 1 \) there is only a single equilibrium (extinction); if \(R = 1 \) there are two intersections, extinction and a positive equilibrium where the isoclines are tangent; if \(R > 1 \) there are three intersections, extinction, and two positive equilibria where the isoclines cross. Therefore, the parameter \(R \) is a bifurcation parameter for the problem. As it increases from small values to larger ones there is a bifurcation from one, to two, to three equilibria.

The parameter \(R \), which we call a fitness parameter, plays a role similar to the basic reproduction number in epidemic models. Observe that \(b/\mu \) is the rate that trophonts produce oocysts times the average lifespan 1/\(\mu \) of trophonts; similarly, we can relate \(\alpha/2\gamma \) to the average number of mature trophonts produced by oocysts and 1/d as the average lifespan of an oocyst.

Figs. 3–5 show how the intersections of the isoclines change as \(R \) increases. It is clear by the structure of the isoclines and direction fields what the stability of each equilibrium is. A detailed stability analysis is outlined in Section 5.

From Figs. 6 and 7 we infer a bifurcation diagram showing equilibria changes as a function of the parameter \(R \).

We can infer additional, immediate results regarding the orders of magnitude of some of the parameters. Because of the longevity
4. Results and simulation

Confronting a mathematical model with data is never an easy task; in fact, it is nearly always the hardest task. The model was parameterized in part from results of a two-year program undertaken at Cedar Point Biological Station (41° 12′ 33″ N, 101° 38′ 54″ W). Studies included the census and collection of larval and adult damselflies over two summer periods and the dissection of the insects’ intestines and counting of mature trophonts. The program with data and data analysis is detailed in Bunker et al. (submitted for publication). We used some of the data from this work to choose key aspects of our model: a density independent mortality of trophonts, a negative binomial distribution of trophonts per host, which gives an equilibrium value of the trophont population, and a linear production rate of oocysts. The counts and measurements reveal the age makeup of the parasite population and ongoing infection events, of 23,755 identified parasites from 1198 larval, 183 terrestrial, and 446 adult hosts (five sites, 9 collections each), over a three-month period in 2010. Gametocyst production rates were estimated from the work of Schwank (2004); oocyst longevity is based on infection experiments of Clapton (1993); oocyst production is based on haemocytometer counts from sporulated gametocysts made during the summer of 2011. The host population estimate (10,000) is based on capture rates and pond areas of the various collection sites.

Field data show convincingly that adult Ishnura verticalis have a different parasite fauna than larvae. Because adult damselflies are terrestrial feeders, and gametocysts must be under water to sporulate and produce oocysts, and transmission to adults must be by way of a transport host or carrier, as in the case of some other gregarines (Wise et al., 1999). When this prey item is in very low numbers, damselfly predation must be minimal, but when prey is present in abundance, predation rate will be limited by a variety of factors, including predator satiation and digestion rate (Richardson and Baker, 1997). Thus encounters between L. verticalis adults and oocyst-bearing prey should become saturated at some point, implying a type 3, or sigmoid, functional response describing the force of infection. Finally, the mortality rate μ of trophonts is based on data by Watwood et al. (1997) and Schwank (2004), who measured the total number of gametocysts shed per trophont over a time period equivalent to three complete parasite developmental periods (8–10 days per period) in experimental infections. Their experiments gave an estimate of the lifespan of trophonts to be 10–12 days, giving our selected value of $\mu = 0.089$ as the trophont mortality rate. We elaborate that obtaining data on adult parasites in a host is a difficult process (e.g., see Anderson and May, 1978)—it requires a one-time, destructive dissection, and so we only a single data point can be found per host. Dissecting many hosts and ‘averaging’ in some manner is confounded by the fact that feeding rates (ingestion of parasites) are variable among the hosts. This is especially true for gregarines, in which the infective stages are so small that they cannot be manipulated singly. The best data available have been obtained in laboratory settings (referenced above). Several insect hosts were fed oocysts in separate environments and the number of gametocysts shed into the water environment were counted. After several days the dissections were done. This gave the number in minus the number out and an estimate of the mortality rate. Some of these experiments were performed with Tribolium and Tenebrio hosts rather than damselfly hosts, whose biology essentially prevents similar studies (e.g., see Richardson and Janovy, 1990; Detwiler, 2004; Detwiler and Janovy, 2008).

A set of baseline parameters for simulations can be developed as follows. There are 5 parameters in the model: b, α, μ, d, γ. The fitness parameter R depends on these five, and the equilibria values of P^* and C^* provide two additional relations. For easy reference we rewrite these relations in terms of the fitness R:

$$C^* = \gamma \left(R + \sqrt{R^2 - 1} \right),$$

$$P^* = \frac{\alpha}{\mu} \left(\frac{b}{\mu} - 1 \right) \approx \frac{ab}{2\gamma d R}.$$

$$R = \frac{\alpha}{2\gamma d} \left(\frac{b}{\mu} - 1 \right) \approx \frac{ab}{2\gamma d R}.$$

Our experimental results give estimates for the three quantities:

$$P^* = 6, \quad b = 1290, \quad \mu = 0.089.$$

These values confirm our approximation b/μ is much greater than 1 in (14). To repeat, the average trophont load P^* was estimated to lie in the range between 5 and 6 by dissection of a large number of intestines of larvae from different locations. We measured the average number of viable gametocysts shed per trophont, 0.043; then, estimating 30,000 oocysts produced per gametocyst gives $b = 1290$. The latter is consistent with the data of Schwank (2004) and Bunker et al. (submitted for publication).

The values of α, γ, and d, all properties of the force of infection side of the life cycle (see Fig. 2), are the most difficult to obtain and were not able to be measured directly. This is common in many parasite studies. However, equations (13) and (14), along with the values in (15), provide estimates of α and product γd, respectively, in terms of the fitness R and the other measured parameters. In particular,

$$\alpha = \frac{\mu P^*}{\mu^*} \left(\frac{R + \sqrt{R^2 - 1}}{R + \sqrt{R^2 - 1}} \right)^2,$$

$$\gamma d = \frac{ab}{2\mu R} \left(\frac{b}{R + \sqrt{R^2 - 1}} \right)^2.$$

Therefore, one strategy is to ask how the left sides of these two equations change as the fitness R changes through a reasonable range of values, say, from $R = 1$ to $R = 1.5$ (from 0% growth to 50% growth). For selected fitness values the associated values of α and γd are shown in Table 2.

The table shows order of magnitude changes in a narrow range of values. We conclude that the stable equilibrium is robust in changes of these parameters.

<table>
<thead>
<tr>
<th>Table 2 Parameters α and γd versus the fitness R.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
</tr>
<tr>
<td>α</td>
</tr>
<tr>
<td>γd</td>
</tr>
</tbody>
</table>
Table 3
Baseline parameter values.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>1290</td>
</tr>
<tr>
<td>(\mu)</td>
<td>0.089</td>
</tr>
<tr>
<td>(a)</td>
<td>0.82</td>
</tr>
<tr>
<td>(d)</td>
<td>0.09</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>4.16(10^6)</td>
</tr>
</tbody>
</table>

A reasonable set of baseline parameters for simulations is \(R = 1.05\) and \(\alpha = 0.82\). To separate \(\gamma\) and \(d\) we note, from (12), that \(C^* = 1.37 \gamma\); so \(\gamma\) and \(C^*\) are of the same order. Taking \(b = 1290\) and \(P^* = 6\), we observe that \(b = 1290P^* = 7740\) oocysts produced. So, \(C^*\) is on the order of \(10^4\). Moreover, the mortality of oocysts, as we have noted, is low. After multiple simulations we chose \(d = 0.09\) and \(\gamma = 6.28(10)^4\). These parameter values, which are used for our sample simulations, are collected in Table 3. These parameters lead to the equilibrium value \(C^* = 8.8(10)^4, P^* = 6.19\) with fitness \(R = 1.06\) for the stable equilibrium. [The unstable equilibrium is \(C^* = 4.4(10)^4, P^* = 3.10\).]

Numerical calculations were performed in MATLAB. Fig. 8 shows time series plots of \(P(t)\) and \(C(t)\) in the case of a stable equilibrium.

Figs. 9 and 10 show time series plots and the phase diagram for small initial conditions. In this case the populations become extinct because of the small initial population at one life cycle stage or another.

4.1. Summarizing remarks

Gregarines form one of the oldest and most abundant parasite groups in the world, and odonates have a long fossil record going back well into the Mesozoic (Bechly, 2010). Yet no mathematical models have been developed for gregarine life cycle dynamics associated with their damselfly hosts in order to attempt to understand the fitness characteristics of these organisms. The reason for this, and for the comparatively few experimental programs on gregarines, is certainly caused by the fact that their insect hosts have been of less interest than other parasites, like schistosomes, which cause fatal infections in the human species (Anderson and May, 1978). But this interest level is changing due the recent appearance of aqua-cultures for farming seafood and fish. Infected insect hosts form part of the diet of fish and other aquatic species.

In this paper we have formulated a direct life-cycle model based on a type III force of infection rate between the hosts and the water-born infectious stage; the production rate of oocysts from trophonts is linear. We showed the existence of a stable equilibrium when the fitness coefficient exceeds one, and the result is robust in that the fitness narrows the values of parameter ranges to ones found in our, and other’s, field studies. Thus, the model supports conclusions regarding gregarine longevity and their high level of fitness, thereby addressing a key issue in evolutionary biology. As is the case for other parasite species, the large production rate of infective aquatic agents overcomes the small contact rate with hosts to maintain fitness. Moreover, gregarines are different from many other parasite species with a direct life cycle because of the long life span of the infective stage (oocysts) in the aquatic domain. Again, that aids in the fitness. One of our key results is that our model and field data do not conform with the classic model of parasite pair-mating in the host, in spite of the common negative binomial distribution of adult parasites per host.

5. Model analysis

In this final section we briefly supply some of the technical details concerning our statements about the model in Section 2. In particular, we carry out a standard linearized stability analysis (e.g., Logan and Wolesensky, 2009, p. 165ff) to confirm analytically the stability properties shown in Figs. 3–5. Moreover, we show that there can be no periodic orbits, or limit cycles, and that there is a compact basin of attraction that is therefore an invariant set for the flow. Put together, these results will show that there are no other bifurcations possible in our system, other than those stated. See

Fig. 8. Time series plots of the oocyst and trophont populations over a 150-day period with initial conditions \(C(0) = 10^4\) and \(P(0) = 8\). The remaining parameters are given in Table 3. The curves approach the stable equilibrium \(C^* = 8.8(10)^4, P^* = 6.19\).
Nedorezov (1997) for a discussion of several other possibilities for related systems occurring in population dynamics.

The model system consists of Eqs. (4) and (5); we denote their right hand sides by \(F(C, P) \) and \(G(C, P) \), respectively. The Jacobian (or, community) matrix for the systems is

\[
J(C, P) = \begin{pmatrix}
\frac{\partial F}{\partial C} & \frac{\partial F}{\partial P} \\
\frac{\partial G}{\partial C} & \frac{\partial G}{\partial P}
\end{pmatrix} = \begin{pmatrix}
-d - \frac{aH(2\gamma^2C)}{(\gamma^2 + C)^2} & b \\
\frac{aH(2\gamma^2C)}{(\gamma^2 + C)^2} - \mu & 0
\end{pmatrix},
\]

where we have used

\[
\frac{\partial}{\partial C} \left(\frac{C^2}{\gamma^2 + C^2} \right) = \frac{2\gamma^2C}{(\gamma^2 + C)^2},
\]

and where \(C \) and \(P \) denote equilibrium values. The test for asymptotic stability of an equilibrium is that \(\text{trace}(J) < 0 \) and \(\det(J) > 0 \). Clearly, from (16), the diagonal entries are negative and so the first condition is satisfied for all equilibria. When \(C = 0 \) (extinction) we have \(\det(J) > 0 \), and therefore the extinction state is always asymptotically stable for any set of parameters. It is easy to check that \((0, 0)\) is a nodal point.

It remains to find the determinant for positive values of the equilibrium \(C \). By definition,

\[
\det(J) = \mu d + \frac{2aH\gamma^2C}{\gamma^2 + C^2} - b - \frac{2aH\gamma^2C}{\gamma^2 + C^2} + \mu b.
\]

Next we use the quadratic relation (8) and definition of \(R \) to write

\[
\gamma^2 + C^2 = \frac{aH}{2d\gamma^2} \left(\frac{b}{\mu} - 1 \right) C = 2\gamma RC.
\]

Then the determinant becomes, upon simplification,

\[
\det(J) = \mu d + aH \frac{2R}{2RC} (\mu - b) = \mu d + \mu aH \frac{2R}{2RC} \left(\frac{b}{\mu} - 1 \right).
\]

Hence, \(\det(J) > 0 \) if, and only if,

\[
C > \frac{aH((b/\mu) - 1)}{2dR^2} = \frac{\gamma}{R}.
\]

For the larger equilibrium this statement is valid because \(C/\gamma = R + \sqrt{R^2 - 1} > R \), since \(R > 1 \). Therefore the larger equilibrium is asymptotically stable. Again, it is a node.

For the smaller positive equilibrium \(C/\gamma = R - \sqrt{R^2 - 1} < R \), so \(\det(J) < 0 \) and therefore the smaller nonzero equilibrium is unstable. Again, it straightforward to check that, at this equilibrium, there are two independent eigenvectors corresponding to the positive and...
negative eigenvalues. These eigenvectors determine the directions of the separatrices, or the unstable manifolds exiting the equilibria and the stable manifolds entering the equilibrium. Thus, we have a saddle structure at the unstable node. It is important to note that the unstable manifolds, which cross the C4 and P axes with negative slope, divide the phase plane into two regions: to the left all orbits approach extinction, and on the right the orbits approach the stable equilibrium ($R > 1$), or approach infinity (only for $R = 1$). Thus, at $R = 1$ a saddle–node bifurcation occurs.

An easy application of the Bendixon–Dulac theorem (e.g., see Logan and Wolesensky, 2009, pp. 168–169) shows there are no periodic orbits in the positive PC-plane. We compute the divergence of the vector field $\frac{\partial F}{\partial C} + \frac{\partial G}{\partial P}$ for $C > 0$, $P > 0$:

$$\frac{\partial F}{\partial C} + \frac{\partial G}{\partial P} = -d - \frac{2y^2C}{(y^2 + C^2)} - mu < 0.$$

By the referenced theorem there can be no periodic solutions, or limit cycles, in the region $C > 0$, $P > 0$ for any values of the parameters.

Finally, for $R > 1$ we show there is a compact (closed, bounded) basin of attraction that traps the solution curves. Refer to Fig. 11. Let $C_m > C^*$ be any fixed value, where $C^* = \sqrt{R^2 - 1}$ is the stable equilibrium, and let P_m be the unique value of P where the intersection of $C = C_m$ with the C-isoline occurs. Clearly, $P_m > P^*$, the P-equilibrium. Let B be the closed rectangle with vertices $(0, 0)$, $(C_m, 0)$, (C_m, P_m), $(0, P_m)$. It follows easily from the definition of the vector field that the boundary of B consists of ingress points; the vector field points inward. Thus, B is a basin of attraction that traps the solution curves. The Poincare–Bendixon theorem limits the behavior of the the orbits entering B. Because they cannot escape and there are no periodic solution inside B, orbits must be an equilibrium (point) or approach an equilibrium. This constrains the possibilities to those stated in Section 2.

Acknowledgements

This research was funded by a joint grant to the Department of Mathematics and to the School of Biological Sciences at the University of Nebraska from the National Science Foundation Grant No. UMB-0531920. We are grateful to the grant’s administrators, Professors Chad Brassil and Glenn Ledder, for helping our RUTE (Research for Undergraduates in Theoretical Ecology) project on parasitology run efficiently. RUTE scholars Austin Barnes, Brittany Bunker, Ayla Duba, Matthew Shuman, and Elizabeth Tracey carried out the extensive field work at Cedar Point Biological Station in Summer, 2010; B. Bunker continued during Summer, 2011. Their detailed field work data and results are presented in another communication (Bunker et al., submitted for publication).

References

Richardson, S., Janovy, J., 1990. *Actinocephalus carrilynnae* N. Sp. (Apicomplexa:
Eugregarinorida) from the blue damselfly, *Enallagama civile* (Hagen). Journal of
Protozoology 37, 567–570.
Dubuque, IA, 701 pp.
Rodriguez, Y., Omoto, C.K., 2007. Individual and population effects of eugregarine,
Gregarina nigshandrodies, on *Tenebrio molitor* (Coleoptera: Tenebrionidae). Envi-
nronmental Entomology 36, 689–693.

Tallis, G.M., Leyton, M.K., 1969. Stochastic models of populations of
helminthic parasites in the definitive host. I. Mathematical Biosciences 4,
(Eugregarinida: Gregarínidae) n. sp. from *Tribolium confusum*, and resolution
of the confused taxonomic history of Gregarina minuta Ishii 1914. Journal of
Parasitology 83, 502–507.
silosennorum*, n. sp. a gregarine parasite of the leech *Helobdella trisi-
rialis* with notes on transmission dynamics. Journal of Parasitology 86,
602–606.