1. Let G be a simple n vertex graph with $n/2 - 1 \leq \delta(G) \leq n - 2$. Prove that G is k-connected for all k with $k \leq 2\delta(G) + 2 - n$. Prove that this is best possible for all $\delta \geq n/2 - 1$ by constructing a simple n vertex graph with minimum degree δ that is not k-connected for $k = 2\delta+3-n$.

2. Let G be a k-connected graph and let S, T be disjoint subsets of $V(G)$ with the size each at least k. Prove that G has k pairwise disjoint S,T-paths.

3. Let X and Y be disjoint sets of vertices in a k-connected graph G. Let $u(x)$ for $x \in X$ and $w(y)$ for $y \in Y$ be nonnegative integers such that $\sum_{x \in X} u(x) = \sum_{y \in Y} w(y) = k$. Prove that G has k pairwise internally disjoint X,Y-paths so that $u(x)$ of them start at x and $w(y)$ of them end at y, for all $x \in X$ and $y \in Y$.

4. Show that Menger’s Theorem implies the König-Egerváry Theorem.