1. In this question we will develop from scratch the natural logarithm function and some of its properties. We define the function \(\ln x \) for \(x > 0 \) as follows. Let \(f(t) = 1/t \) and set

\[
\ln x = \int_1^x f.
\]

(a) Show that \(\ln x \) is defined for all \(x > 0 \), i.e., that \(f \) is integrable over the relevant intervals.

(b) Show that \(\ln x \) is continuous everywhere on its domain.

(c) Show that \(d/dx[\ln x] = 1/x \).

(d) Show that \(\ln x \) is a strictly increasing function.

(e) Show that \(\ln x \) is invertible.

(f) Show, by exhibiting suitable partitions, that

\[
\ln 2 < 1 < \ln 3.
\]

(g) Show that there is a unique solution in \((2, 3)\) to \(\ln x = 1 \).

(h) Prove that for \(a, b > 0 \) we have

\[
\ln(ab) = \ln a + \ln b.
\]

(Hint: Define a function \(L(x) = \ln(ax) \) and prove that \(L'(x) = 1/x \). Deduce that \(L(x) = \ln(x) + c \) for some constant \(c \) and deduce the value of \(c \))

(i) Prove that \(\ln(x^n) = n \ln x \) for all \(x > 0 \) and non-negative integers \(n \).

(j) Prove that \(\ln(a/b) = \ln a - \ln b \) for all \(a, b > 0 \).

(k) Prove that \(\ln(x^n) = n \ln x \) for all integers \(n \).

2. Let \(u \) be a differentiable function on \([a, b]\) and suppose that \(u' \) is integrable on \([a, b]\). Let \(f \) be a function that is continuous on the range of \(u \). If \(u(a) = c \) and \(u(b) = d \) prove that

\[
\int_a^b f(u(x))u'(x)dx = \int_c^d f(x)dx.
\]

(Hint: As in Theorem 3.6.1, let \(F(x) = \int_c^x f(t)dt \) for all \(x \) in the range of \(u \). Let \(g(x) = F(u(x)) \) for \(x \in [a, b] \). Now compute \(\int_a^b g' \) in two different ways.)