Instructions: Show all of your work and clearly explain your answers. No books or written notes are allowed during the exam. Do any 4 of the 5 problems. Use one page per problem. Be sure to clearly indicate which of the 5 problems you want graded. Each problem counts 25 points, for a total of 100.

[1] Let \(S \) be the set \(\{a, b, c\} \).
(a) Define a relation on the set \(S \) by putting checkmarks in a labeled tic-tac-toe grid, as on the board. Check as many squares as possible, such that the relation you define is NOT reflexive.
(b) This time let the set \(S \) be the set of all people. Say person \(A \) is related to person \(B \) if \(A \) and \(B \) share a grandparent, but not a parent (i.e., if \(A \) and \(B \) are cousins but not siblings). For each of the properties reflexivity, symmetry and transitivity, determine whether or not the property holds for this relation. Justify your answer in each case.

[2] Prove the formula \(1 + 3 + 5 + \cdots + (2n - 1) = n^2 \) for each \(n \geq 1 \). (I.e., prove that the sum of the first \(n \) odd integers equals \(n^2 \).) Include each step of the proof in your answer.

[3] Let \(a_1 = 3, \ a_2 = 5, \) and define \(a_{n+1} = 3a_n - a_{n-1} \) for \(n \geq 2 \). Prove that \(a_k > 2^k \) for each integer \(k \geq 1 \).

[4]
(a) Use Euclid’s method to find \(\gcd(357, 918) \).
(b) Show how to use your work in (a) to find an integer solution to \(918x + 357y = \gcd(357, 918) \).
(c) Find the least positive integer \(y \) such that \(918x + 357y = \gcd(357, 918) \) has a solution where \(x \) also is an integer. Justify your answer.

[5]
(a) Explain why the least positive integer linear combination \(111x + 74y \) of 111 and 74 is 37.
(b) Let \(k \) be an integer. Justify why \(111x + 74y = k \) has a solution if and only if \(37 | k \).