Proof of Perron-Frobenius Theorem

Let \(x = (x_1, x_2, \ldots, x_n)^T \in \mathbb{R}^n \) with \(y^T \) denoting exclusively the transpose of vector \(y \). Let \(\|x\| = \max_i \{|x_i|\} \) be the norm. Then the induced operator norm for matrix \(A = [a_{ij}] \) is \(\|A\| = \max_i \{|\sum_j a_{ij}|\} \).

Consider a Markov’s chain on \(n \) states with transition probabilities \(p_{ij} = \Pr(X_{k+1} = i|X_k = j) \), independent of \(k \), and \(P = [p_{ij}] \) the transition matrix. Then \(\sum_{i=1}^n p_{ij} = 1 \) for all \(j \). Let \(p_{ij}^{(t)} = \Pr(X_{k+t} = i|X_k = j) \) and \(P^{(t)} = [p_{ij}^{(t)}] \) be the \(t \)-step transition probability matrix. Then we have \(p_{ij}^{(t)} = \sum_k p_{ik}^{(t-1)} p_{kj} \) for all \(i, j \). In matrix, \(P^{(t)} = P^{(t-1)} P = \cdots = P^t \) which is the \(t \)-step transition matrix. If \(q = (q_1, \ldots, q_n)^T \) is a probability distribution for the Markovian states at a given iterate with \(q_i \geq 0, \sum q_i = 1 \), then \(PQ \) is again a probability distribution for the states at the next iterate. A probability distribution \(w \) is said to be a steady state distribution if it is invariant under the transition, i.e. \(Pw = w \). Such a distribution must be an eigenvector of \(P \) and \(\lambda = 1 \) must be the corresponding eigenvalue.

The existence as well as the uniqueness of the steady state distribution is guaranteed for a class of Markovian chains by the following theorem due to Perron and Frobenius.

Theorem 1. Let \(P = [p_{ij}] \) be a probability transition matrix, i.e. \(p_{ij} \geq 0 \) and \(\sum_{i=1}^n p_{ij} = 1 \) for every \(j = 1, 2, \ldots, n \). Assume \(P \) is irreducible and transitive in the sense that \(p_{ij} > 0 \) for all \(i, j \). Then \(1 \) is a simple eigenvalue of \(P \) and all other eigenvalues \(\lambda \) satisfy \(|\lambda| < 1 \). Moreover, the unique eigenvector can be chosen to be a probability vector \(w \) and it satisfies \(\lim_{t \to \infty} P^t = [w, w, \ldots, w] \). Furthermore, for any probability vector \(q \) we have \(P^t q \to w \) as \(t \to \infty \).

Proof. We first prove a claim that \(\lim_{t \to \infty} p_{ij}^{(t)} \) exist for all \(i, j \) and the limit is independent of \(j \), \(\lim_{t \to \infty} p_{ij}^{(t)} = w_i \).

Because \(P = [p_{ij}] \) (is irreducible and transitive) has non-zero entries, we have

\[
\delta = \min_{ij} p_{ij} > 0.
\]

Consider the equation of the \(ij \)th entry of \(P^{t+1} = [p_{ij}^{(t+1)}] = P^t P \),

\[
p_{ij}^{(t+1)} = \sum_k p_{ik}^{(t)} p_{kj}.
\]

Let \(0 < m_i^{(t)} := \min_j p_{ij}^{(t)} \leq \max_j p_{ij}^{(t)} := M_i^{(t)} < 1 \).
Then, we have

\[m_i^{(t+1)} = \min_j \sum_k p_{ik}^t p_{kj} \geq m_i^{(t)} \sum_k p_{kj} = m_i^{(t)}. \]

i.e., the sequence \(\{m_i^{(1)}, m_i^{(2)}, \ldots\} \) is non-decreasing. Similarly, the upper bound sequence \(\{M_i^{(1)}, M_i^{(2)}, \ldots\} \) is non-increasing. As a result, both limits \(\lim_{t \to \infty} m_i^{(t)} = m_i \leq M_i = \lim_{t \to \infty} M_i^{(t)} \) exist. We now prove they are equal \(m_i = M_i \).

To this end, we consider the difference \(M_i^{(t+1)} - m_i^{(t+1)} \):

\[
M_i^{(t+1)} - m_i^{(t+1)} = \max_j \sum_k p_{ik}^t p_{kj} - \min_{\ell} \sum_k p_{ik}^t p_{k\ell} \\
= \max_j \sum_k p_{ik}^t (p_{kj} - p_{k\ell}) \\
= \max_j \left[\sum_k p_{ik}^t (p_{kj} - p_{k\ell})^+ + \sum_k p_{ik}^t (p_{kj} - p_{k\ell})^- \right] \\
\leq \max_{j,\ell} \left[M_i^{(t)} \sum_k (p_{kj} - p_{k\ell})^+ + m_i^{(t)} \sum_k (p_{kj} - p_{k\ell})^- \right].
\]

(1)

where \(\sum_k p_{ik}^t (p_{kj} - p_{k\ell})^+ \) means the summation of only the positive terms \(p_{kj} - p_{k\ell} > 0 \) and similarly \(\sum_k p_{ik}^t (p_{kj} - p_{k\ell})^- \) means the summation of only the negative terms \(p_{kj} - p_{k\ell} < 0 \).

It is critical to notice the following unexpected equality with the notations \(\sum_k^- (p_{kj} - p_{k\ell}) := \sum_k (p_{kj} - p_{k\ell})^- \), \(\sum_k^+ (p_{kj} - p_{k\ell}) := \sum_k (p_{kj} - p_{k\ell})^+ \):

\[
\sum_k^- (p_{kj} - p_{k\ell}) = \sum_k^- (p_{kj} - p_{k\ell}) \\
= \sum_k^- p_{kj} - \sum_k^- p_{k\ell} \\
= 1 - \sum_k^- p_{kj} - (1 - \sum_k^+ p_{k\ell}) \\
= \sum_k^+ (p_{k\ell} - p_{kj}) \\
= - \sum_k^- (p_{kj} - p_{k\ell})^+.
\]

Hence, the inequality (1) becomes

\[
M_i^{(t+1)} - m_i^{(t+1)} \leq (M_i^{(t)} - m_i^{(t)}) \max_{j,\ell} \sum_k (p_{kj} - p_{k\ell})^+.
\]

If \(\max_{j,\ell} \sum_k (p_{kj} - p_{k\ell})^+ = 0 \), it is done that \(M_i^{(t)} = m_i^{(t)} \). Otherwise, for the pair \(j, \ell \) that gives the maximum let \(r \) be the number of terms in \(k \) for which \(p_{kj} - p_{k\ell} > 0 \), and \(s \) be the number of terms for which \(p_{kj} - p_{k\ell} < 0 \). Then \(r \geq 1 \), and \(\bar{n} := r + s \geq 1 \) as well as \(\bar{n} \leq n \). More importantly

\[
\sum_k^- (p_{kj} - p_{k\ell})^+ = \sum_k^+ p_{kj} - \sum_k^+ p_{k\ell} \\
= 1 - \sum_k^- p_{kj} - \sum_k^+ p_{k\ell} \\
\leq 1 - s\delta - r\delta = 1 - \bar{n}\delta \\
\leq 1 - \delta < 1.
\]
The estimate for the difference \(M_i^{(t+1)} - m_i^{(t+1)} \) at last reduces to

\[
M_i^{(t+1)} - m_i^{(t+1)} \leq (1 - \delta)(M_i^{(t)} - m_i^{(t)}) \leq (1 - \delta)^t(M_i^{(1)} - m_i^{(1)}) \to 0,
\]
as \(t \to \infty \), showing \(M_i = m_i : = w_i \). As a consequence to the inequality \(m_i^{(t)} \leq p_{ij}^{(t)} \leq M_i^{(t)} \), we have \(\lim_{t \to \infty} p_{ij}^{(t)} = w_i \) for all \(j \). In matrix notation, \(\lim_{t \to \infty} P^t = [w, w, \ldots, w] \).

Next, we show the \(\lambda = 1 \) is an eigenvalue with eigenvector \(w \). In fact from the definition of \(w \) above \(\lim_{t \to \infty} P^t = [w, w, \ldots, w] \) and thus \([w, w, \ldots, w] = \lim_{t \to \infty} P^t = P \lim_{t \to \infty} P^{t-1} = P[w, w, \ldots, w] = [Pw, Pw, \ldots, Pw] \) showing \(Pw = w \).

Next, we show the eigenvalue \(\lambda = 1 \) is simple. Let \(x \neq 0 \) be an eigenvector. Then \(Px = x \). Apply \(P \) to the identity repeatedly to have \(P^t x = x \). In limit, \(\lim_{t \to \infty} P^t x = [w, w, \ldots, w]x = (w_1 \sum x_j, w_2 \sum x_j, \ldots, w_n \sum x_j)^T = (x_1, x_2, \ldots, x_n)^T \). So \(x_i = w_i \sum x_j \) for all \(i \). Because \(x \neq 0 \), we must have \(\bar{x} := \sum x_j \neq 0 \), and that all \(x \) have the same sign. In other words, \(x = \bar{x}(w_1, \ldots, w_n)^T = \bar{x}w \) for some constant \(\bar{x} \neq 0 \), showing that the eigenvector of \(\lambda = 1 \) is unique up to a constant multiple. Finally, for any probability vector \(q \), the result above shows \(\lim_{t \to \infty} P^t q = (w_1 \sum q_j, w_2 \sum q_j, \ldots, w_n \sum q_j)^T = w \).

Next, let \(\lambda \) be an eigenvalue of \(P \). Then it is also an eigenvalue for the transpose \(P^T \). Let \(x \) be an eigenvector of \(\lambda \) of \(P^T \). Then \(P^T x = \lambda x \) and \(\|\lambda x\| = |\lambda||x| \leq \|P^T||x| \). Since \(\|P^T\| = 1 \) because \(\sum_{i=1}^n p_{ij} = 1 \) we have \(|\lambda| \leq 1 \).

Finally, let \(x \) be an eigenvector of an eigenvalue \(\lambda \). Then we have \(\lim_{t \to \infty} P^t x = W x = (\sum x_j)w \) on one hand and \(\lim_{t \to \infty} P^t x = \lim_{t \to \infty} \lambda^t x \) on the other hand. So either \(|\lambda| < 1 \) in which case \(\lim_{t \to \infty} \lambda^t x = 0 \) and then \(\sum x_j = 0 \), or \(|\lambda| = 1 \) in which case \(\lambda = e^{i\theta} \) for some \(\theta \) and the limit \(\lim_{t \to \infty} \lambda^t = \lim_{t \to \infty} e^{i\theta t} \) exists since \(\lim_{t \to \infty} e^{i\theta t} x = \lim_{t \to \infty} e^{i\theta t} \lambda^t x = \lim_{t \to \infty} P^t x = (\sum x_j)w \). The latter case holds if and only if \(\sum x_j \neq 0 \) and \(\theta = 0 \), i.e. \(\lambda = 1 \). This shows that all eigenvalues that is not \(\lambda = 1 \) are inside the unit circle.

References: Bellman(1977); Berman & Plemmons(1994); Frobenius(1908, 1912); Lancaster & Tismenetsky(1985); Marcus & Minc(1984); Perron(1907); Petersen(1983); Seneta(1973).