1. State and prove the Bolzano-Weierstrass Theorem. Explain clearly your use of any lemmas.

2. For each of the following statements, determine if it is true or false and provide either a proof or a counterexample, as appropriate.
 (a) For \(n \in \mathbb{N} \) and \(A \subseteq \mathbb{R} \), define \(A^n \) to be \(\{ a^n : a \in A \} \). If \(A \) is a bounded-above nonempty set of nonnegative real numbers, then, for \(n \in \mathbb{N} \), \(\sup A^n = (\sup A)^n \).
 (b) If \((x_n) \) has the property that every subsequence of \((x_n) \) has a convergent subsubsequence, then \((x_n) \) converges.

3. If \(\lim_{n \to \infty} a_n = a \) and there are infinitely many terms of \((a_n) \) which are greater than \(a \), then there is an decreasing subsequence of \(a_n \) which converges to \(a \).

4. Suppose the sequence \((a_n) \) is decreasing and \(a_n - a_{n-1} > -1/n^2 \) for all \(n \in \mathbb{N} \). Prove that \((a_n) \) converges.

5. Prove that every conditionally convergent series has a rearrangement that diverges to \(+\infty\), i.e., the sequence of partial sums diverges to \(+\infty\).

6. Suppose that \((n_k) \) is a strictly increasing sequence of positive integers so that

\[
\lim_{k \to \infty} \frac{n_k}{n_1 n_2 \cdots n_{k-1}} = +\infty.
\]

Prove that \(\sum_{i=1}^{\infty} \frac{1}{n} \) converges to an irrational number.