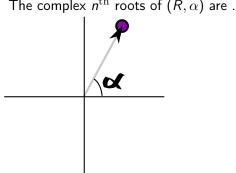
Last Time:

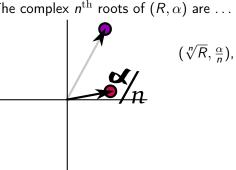
- polar representation of complex numbers: (r, α) .
 - r is taken to be real and positive (or zero).
 - ullet α can be any real number.
- "angles add, magnitudes multiply": $(r, \alpha) \cdot (s, \beta) = (rs, \alpha + \beta)$
- So the n^{th} "roots of unity" are $(1, \frac{2\pi}{n}), (1, \frac{4\pi}{n}), \dots, (1, \frac{2(n-1)\pi}{n})$. There are exactly n complex n^{th} roots of 1.

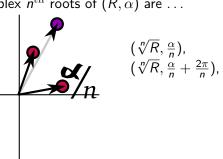
Last Time:

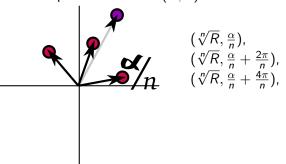
- polar representation of complex numbers: (r, α) .
 - r is taken to be real and positive (or zero).
 - $\bullet \ \alpha$ can be any real number.
- "angles add, magnitudes multiply": $(r, \alpha) \cdot (s, \beta) = (rs, \alpha + \beta)$
- So the n^{th} "roots of unity" are $(1, \frac{2\pi}{n}), (1, \frac{4\pi}{n}), \dots, (1, \frac{2(n-1)\pi}{n})$. There are exactly n complex n^{th} roots of 1.

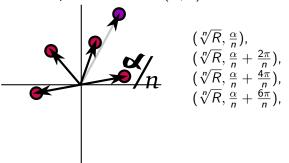
Question:

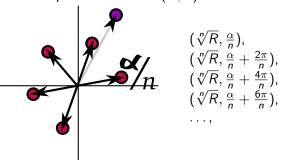

Is $(1, \frac{10\pi}{3})$ a cube root of 1?

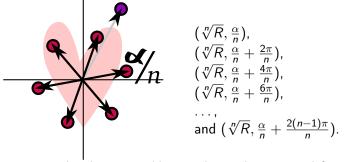

Your work on $4 + 4\sqrt{3}i$ and $\frac{1}{16} + \frac{1}{16}\sqrt{3}i$ hinted at:


A generalization of the pattern of complex n^{th} roots of 1, to roots of complex numbers.


This is an amazing fact: by expanding our view of numbers to complex numbers, we can always find 2 square roots, 3 cube roots, 4 fourth roots, 5 fifth roots, . . . !


The power of **DeMoivre's Theorem** (aka the Holy Grail of Complex Numbers) is making this discovery precise.





The complex n^{th} roots of (R, α) are . . .

DeMoivre's Theorem is like a Valentine's Day Card from Geometry to Algebra, each praising the beauty of the other.

Exactly n

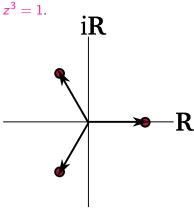
Two parts to showing you have **exactly** *n*:

- You have *n* different numbers.
- If someone shows you an $n^{\rm th}$ root, it must be one of the ones you found.

Exactly n

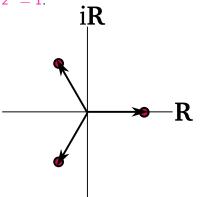
Two parts to showing you have exactly *n*:

- You have *n* different numbers.
- If someone shows you an $n^{ ext{th}}$ root, it must be one of the ones you found.

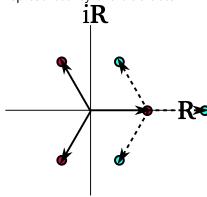

Please send a representative of your group to pick up the handouts on:

- Features of a Good Explanation
- DeMoivre's Theorem

Read the first proof of **DeMoivre's Theorem**. In your groups, come up with a good explanation of how each of these parts are accomplished.


Solving even more polynomials

The red points represent solutions to



Solving even more polynomials

The red points represent solutions to $z^3 = 1$.

What polynomial's solutions are represented by the blue dots?

