Warm Up

Please arrange the desks in clusters to satisfy the conditions:

- * You are seated with your March groups
- * It is possible to walk easily between clusters
- * It is easy to identify who belongs to which cluster.

Gather:

* epsilon kits (graphs on pink paper, ε-strip transparencies)

Discuss:

* Take a graph of a convergent sequence. Place ε -strips on the graph, aligning the center with the limit of the sequence. How many points lie outside the ε -strip? How many points lie inside? Find out the answer to these questions for each example of a convergent sequence available to you.

March groups:

Devin H.	Danielle K.	Pete M.	Jessica K.	Kari F. Josh S. Beth B. Brady S.	James R.
Keturah C.	Jeff V.	Rebekah L.	Laura W.		Aaron P.
Kayla K.	John A.	Jared S.	Ted W.		Cara C.
Scott H.	Kaitlyn H.	Sam B.	Chris D.		Sam V.
Jim D.	Carl C.	Brian T.	Patrick M.	Dan E.	Megan M.

In/outside of ε-strips centered at the limit

Take a convergent sequence. Place ε -strips on its graph, aligning the center with the limit of the sequence. How many points lie outside the ε-strip? How many points lie inside? Find out the answer to these questions for each example of a convergent sequence available to you, and each ε -strip available to you.

(The sequences (both convergent and divergent) in the packet:)

$a_n = \frac{1}{n}$	$a_n = \sqrt{n}$	$a_n = \frac{n}{5n}$
1 1 — If <i>n</i> is even	$a_n = 1$	$a_n=(-1)^n+\frac{1}{n}$
$a_n = \begin{cases} \frac{1}{n}, & \text{if } n \le 10\\ \frac{1}{10}, & \text{if } n > 10 \end{cases}$		$a_n = n^3/2^n$
	$a_n = \begin{cases} 1, & \text{if } n \text{ is odd} \\ \frac{1}{n} & \text{if } n \text{ is even} \end{cases}$	

Tabulating our observations

$a_n = \frac{1}{n}$	$a_n = \sqrt{n}$	$a_n = \frac{n}{5n}$
$a_n = \begin{cases} 1, & \text{if } n \text{ is odd} \\ 1 - \frac{1}{n}, & \text{if } n \text{ is even} \end{cases}$	$a_n = 1$	$a_n=(-1)^n+\frac{1}{n}$
$a_n = \begin{cases} \frac{1}{n}, & \text{if } n \le 10\\ \frac{1}{10}, & \text{if } n > 10 \end{cases}$		$a_n=n^3/2^n$
	$a_n = \begin{cases} 1, & \text{if } n \text{ is odd} \\ \frac{1}{n} & \text{if } n \text{ is even} \end{cases}$	

Convergent sequence	ε	#terms inside ε-strip centered at limit	# terms outside ε-strip centered at limit
		[on blackboard]	

In/outside of ε-strips NOT centered at the limit

- (1) Take the sequence a(n) = 1/n. Overlap ϵ -strips on y = 0.2. As ϵ gets smaller, how many points of the graph lie within the strip? How many points lie outside?
- (2) What if you overlap ε -strips on y = -0.2?
- (3) Overlap ε-strips on other sequences, both centered at the limit and not centered at the limit. How many points lie inside/ outside the strip? What happens as ε grows or shrinks?

Tabulating our observations

Sequence	Center of ε-strip	Width of ε-strip	#terms inside ε-strip	#terms outside ε-strip
		[on black	l board]	

Two definitions using ε-strips

Send one representative of your group to gather enough definitions handouts for each person in your group.

Apply Definition A and Definition B to various sequences.

Do they properly describe the limit of a sequence?

Why or why not?

Definition A: L is a limit of a sequence when infinitely many points on the graph of the sequence are covered by any ϵ -strip as long as the ϵ -strip is centered at L.

Definition B: L is a limit of a sequence when only finitely many points on the graph of the sequence are NOT covered by any ε -strip as long as the ε -strip is centered at L.

Tabulating our observations

Sequence	There is an L that satisfies the conditions of Definition A	There is an L that satisfies the conditions of Definition B
	[on blac	kboard]

Comparison with the ε-N definition

Let's zoom in on two definitions:

The ε-N Definition: L is the limit of a sequence a(n) if for each $\epsilon > 0$, there is an N such that $|a(n) - L| < \epsilon$ for all $n \le N$. (The N may be different for different ϵ .)

The ϵ -strip Definition B: L is a limit of a sequence when only finitely many points on the graph of the sequence are NOT covered by any ϵ -strip as long as the ϵ -strip is centered at L.

Write down the ε -N Definition on the bottom of the table you were just working on.

Determine which of the sequences in the table satisfy the ε -N Definition. How do you know?

Summary of ε-strip activity

Send a representative of your group to gather copies of the ϵ -strip summary.

In your groups, come up with a description of **how to show that a sequence is convergent**. (This is a description along the lines of the proof by contradiction description: What are the key pieces of the argument? What do you need to define for each piece?)

If you have time, come up with descriptions for --

- What kinds of divergence are there?
- How would someone show that a sequence is divergent?

Preview: Properties of the Reals

Next:

To Infinity and Beyond!

Featuring ...

- Density
- Rationalizing the existence of irrationals
- The return of the a+b√7 family!