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We prove the Fundamental Theorem of Algebra:

Fundamental Theorem of Algebra. Let f be a non-constant polynomial with real
coefficients. Then f has at least one complex root.

The first half of the proof analyses the images of “sufficiently large” loops (Sec-
tion 1) and “sufficiently small” loops (Section 2). We will quantify in these sec-
tions what “sufficiently large” and “sufficiently small” mean. The second half
of the proof analyses the images of loops “close together” (Section 3), and ap-
plies the properties of images to show the existence of a z ∈ C so that f (z) = 0
(Section 4). The existence proof relies on an examination of winding number.

0 Preliminaries

Let f be defined with the coefficients

f (z) = a0 + a1z + a2z2 + . . . + an−1zn−1 + anzn,

where an 6= 0 (to guarantee that f (z) is nonconstant).

Note that since f is nonconstant, n ≥ 1.

Notation. Throughout the proof, we will use the notation:

• a = max{|a0|, |a1|, . . . , |an−1|, 1} coefficients of f .

• CR = (R, t), t ∈ [0, 2π], where (R, t) is the parametrization, written in
polar form, of the counterclockwise path in C traversing once counter-
clockwise around the circle with radius R and center 0.

Simplifying Assumptions. Note that if a0 = 0, then f (0) = 0, so 0 is a root. So
from now on, we work with the case a0 6= 0.

It is sufficient to prove the theorem for an = 1. For suppose that we have shown
that all nonconstant polynomials with leading coefficient 1 must have at least
one complex root. Then the polynomial

g(z) =
f (z)
an

=
a0

an
+

a1

an
z + . . . +

an−1

an
zn−1 + zn

has at least one root; suppose the root is z0. It follows that

f (z0) = ang(z0) = an · 0 = 0,

so z0 is a root of f . Thus proving the Fundamental Theorem of Algebra for the
case an = 1 implies the theorem for the case when an 6= 1. So, in what follows,
we assume an = 1.
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1 Large Input Loops

Our goal in this section is to prove Proposition 1 below. The key idea of its
statement is –

If R is big enough, then f sends CR to a path contained in an annulus around the
circle with radius Rn, centered around the origin.

A schematic of the statement can be found at the end of this section.

Proposition 1. If R ≥ 2na, then

f (CR) ⊂
{

z ∈ C

∣∣∣∣ 1
2

Rn ≤ |z| ≤ 3
2

Rn
}

.

Lemma 1. If R ≥ 2na, then

aRk ≤ Rn

2n
for 0 ≤ k ≤ n− 1.

Proof of Lemma 1. Note that 2na > 1, so if R ≥ 2na, then Rm ≥ R ≥ 2na for
m ≥ 1, including m = n− k, for 0 ≤ k ≤ n− 1. It follows that

Private math: For this
lemma, we seek an R so
that aRk ≤ Rn

2n , which
can be rewritten

aRk ≤ Rn

2n
2na ≤ Rn−k

n−k√2na ≤ R (∗)

One R that satisfies (∗)
is 2na, because 2na is at

least as large as n−k√2na.

Rn−k ≥ 2na
Rn ≥ 2naRk

Rn

2n
≥ aRk

as desired.

Proof of Proposition 1. To prove the proposition, we need to show that R ≥ 2na
implies the radius of f (CR(t)) is between 1

2 Rn and 3
2 Rn, for all t. The radius of

f (CR(t)) is ∣∣(R, t)n + an−1(R, t)n−1 + . . . + a1(R, t) + a0
∣∣,

which is bounded below by∣∣∣∣Rn −
(
|an−1|Rn−1 + . . . + |a1|R + |a0|

)∣∣∣∣, (∗)

and bounded above by

Rn + |an−1|Rn−1 + . . . + |a1|R + |a0|. (∗∗)

Suppose R ≥ 2na. We have just shown that this condition implies aRk ≤ Rn

2n
for 0 ≤ k ≤ n− 1. Consequently,

|an−1Rn−1|+ . . . + |a1R|+ |a0| ≤
Rn

2n
+ . . . +

Rn

2n
+

Rn

2n︸ ︷︷ ︸
n times

=
Rn

2
.
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Plugging in our calculations into (∗) and (∗∗), we conclude that R ≥ 2na im-
plies the radius of f (CR(t)) satisfies∣∣∣∣Rn − Rn

2

∣∣∣∣ ≤ | f (CR(t))| ≤ Rn +
Rn

2

1
2

Rn ≤ | f (CR(t))| ≤ 3
2

Rn

for all times t, as claimed.

We have shown that when R is “large enough”, meaning its radius is at least
2na, then f sends CR to a loop that is contained in a neighbourhood of a circle
with radius Rn. See Figure 1 for a visual schematic of the meaning of Proposi-
tion 1.

input

2na

CR

output

Rn
Rn

2

Rn

2

Figure 1. Visual schematic for Proposition 1. If
CR is contained in the shaded input region, then
its image is contained in the shaded output region.
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2 Small Input Loops

Proposition 2. When R ≤ |a0|
2na , then f (CR) is contained in a disk of radius |a0|

2
centered at a0.

Lemma 2. Suppose R ≤ |a0|
2na . Then aRk ≤ |a0|

2n for 1 ≤ k ≤ n.

Proof of Lemma 2. Suppose R ≤ |a0|
2na , and let 1 ≤ k. Note that |a0|

2na < 1, as |a0| is

at most a. This implies
(
|a0|
2na

)k
≤ |a0|

2na .

Private math: For this
lemma, we seek an R so

that aRk ≤ |a0 |
2n , which

can be rewritten

aRk ≤ |a0|
2n

Rk ≤ |a0|
2na

R ≤ k

√
|a0|
2na

(∗)

One R that satisfies (∗)
is |a0 |

2na , because |a0 |
2na is at

most
k
√
|a0 |
2na if |a0 |

2na < 1.

We have

aRk ≤ a ·
(
|a0|
2na

)k
≤ a · |a0|

2na
=
|a0|
2n

as desired.

Proof of Proposition 2. To prove the proposition, we need to show that R ≤ |a0|
2na

implies that |a0 − f (CR(t))| ≤ |a0|
2 for all t. Note that

|a0 − f (CR(t))| =
∣∣∣a0 −

(
a0 + a1(R, t) + . . . + an−1(R, t)n−1 + (R, t)n

)∣∣∣
≤ |a1|R + |a2|R2 + . . . + |an−1|Rn−1 + Rn.

Suppose R ≤ |a0|
2na . We have just shown this condition implies aRk ≤ |a0|

2n for
1 ≤ k. Consequently,

|a0 − f (CR(t))| ≤ |a1|R + |a2|R2 + . . . + |an−1|Rn−1 + Rn

≤ |a0|
2n

+
|a0|
2n

+ . . . +
|a0|
2n︸ ︷︷ ︸

n times

=
|a0|

2

for all t, as claimed.

We have shown that when CR is “small enough”, meaning its radius is at most
|a0|
2na , then f sends CR to a loop that is contained in a neighbourhood of a0, the
constant term.
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input

|a 0|
2na

CR

output

a0

|a 0|
2

Figure 2. Visual schematic for Proposition 2. If
CR is contained in the shaded input region, then
its image is contained in the shaded output region.

3 Neighbourhoods of Input Loops

The goal of this section is to prove Proposition 3.

Proposition 3. Let (R, t) ∈ C. For every ε > 0, there exists a δ0 > 0 such that
|δ| < δ0 implies

| f (R + δ, t)− f (R, t)| < ε.

Recall that the degree of f is n. In the proof of Proposition 3, we let C denote
the largest coefficient over all terms of the multinomials {(x + δ)k | 0 < k ≤ n}.
Lemma 3. Given 0 < |δ| < R,

|(R + δ)k − Rk| ≤ |δ|kCRk−1

for all integers k ≥ 0.

Proof of Lemma 3. After expansion, the expression (R + δ)k − Rk contains only
terms of the form Rk−1δ, Rk−2δ2, . . . , Rδk−1, δk, as the term Rk cancels.

To prove the lemma, first consider positive δ. Then

|(R + δ)k − Rk| = (R + δ)k − Rk

≤ CRk−1δ + CRk−2δ2 + . . . + CRδk−1 + Cδk

≤ δC(Rk−1 + Rk−2δ + . . . + Rδk−2 + δk−1)

≤ δC(Rk−1 + Rk−1 + . . . + Rk−1︸ ︷︷ ︸
k times

)

≤ δCkRk−1.
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Now suppose δ is negative, so |(R + δ)k − Rk| = Rk − (R − |δ|)k. Because
power functions are concave up, it follows that

Rk − (R− |δ|)k ≤ (R + |δ|)k − Rk ≤ |δ|CkRk−1.

We have shown the lemma.

Corollary 1. Let K = an2C max{R, 1}n. If 0 ≤ |δ| ≤ R, then

| f (R + δ, t)− f (R, t)| < δK.

Proof of Corollary 1. Note that

| f (R + δ, t)− f (R, t)| =

∣∣∣∣∣ n

∑
k=1

ak

(
(R + δ, t)k − (R, t)k

)∣∣∣∣∣
≤

n

∑
k=1

a
(
(R + δ, t)k − (R, t)k

)
≤

n

∑
k=1

a
(
(R + δ)k − Rk

)
.

It follows from Lemma 3 that
n

∑
k=1

a
(
(R + δ)k − Rk

)
≤

n

∑
k=1

aδkCRk−1

<
n

∑
k=1

aδnC max{R, 1}n

= n · aδnC max{R, 1}n

= δK

Hence | f (R + δ, t)− f (R, t)| < δK as claimed.

We now prove the proposition.

Proof of Proposition 3. Fix ε > 0. We seek δ0 > 0 that guarantees that if |δ| < δ0,
then | f (R + δ, t)− f (R, t)| < ε. We claim that

δ0 =
ε

K
works. Indeed, suppose

|δ| < δ0 =
ε

K
.

By Corollary 1,

| f (R + δ, t)− f (R, t)| < |δ|K < δ0K =
ε

K
· K = ε

as we sought to prove.
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4 Proof of the Fundamental Theorem of Algebra

Proposition 4. Let R > 0, and suppose f (CR) does not cross the origin. Let ε0 be
min{| f (CR(t))| | t ∈ [0, 2π]}. Let δ0 = ε0/K, where K is defined as in Corollary 1.

Then |δ| < δ0 implies that the winding numbers of f (CR) and f (CR+δ) are the same.

Proof. We show that there is a deformation of f (CR) to f (CR+δ) that does not
cross the origin, and hence the winding numbers of the two paths must be
equal.

Define pα(t), t ∈ [0, 2π] as the path f (CR(t)) + α( f (CR+δ(t)) − f (CR(t))) for
α ∈ [0, 1]. Note that p0 = f (CR) and p1 = f (CR+δ), and as α sweeps from 0 to
1, the path pα deforms from f (CR) to f (CR+δ).

By Proposition 3, |δ| < δ0 guarantees that | f (CR+δ(t)) − f (CR(t))| is strictly
less than ε0, the minimum radius of any point in f (CR(t)). It follows that
pα cannot pass through the origin for any α. Hence we can deform f (CR) to
f (CR+δ) without passing through the origin, so |δ| < δ0 guarantees that the
winding numbers of f (CR) and f (CR+δ) are equal.

By using similar techniques, we obtain the corollary of Proposition 1:

Corollary 2. Suppose R ≥ 2na. Then the winding number of f (CR) is n.

Proof. We show that the winding number of f (CR) is n by deforming a path
that has winding number n to f (CR). This path is (CR)n = (Rn, nt).

Define the deformation qα(t) = (CR)n + α( f (CR(t)) − (CR(t))n), t ∈ [0, 2π]
from (CR)n to f (CR). By Proposition 1, | f (CR(t))| is at most Rn/2. It follows
that | f (CR(t))− (CR(t))n| ≤ |Rn/2− Rn| = Rn/2, so qα does not pass through
the origin for any α. Thus the winding numbers of (CR)n and f (CR) must be
equal.
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We now complete the proof of the Fundamental Theorem of Algebra. In the
following proof, we use circle to denote a path of the form (r, t), t ∈ [0, 2π],
where r > 0 is constant.

Fundamental Theorem of Algebra. Let f be a nonconstant polynomial. Then f
has at least one complex root.

Proof of Fundamental Theorem of Algebra. In this argument, we analyse winding
numbers. Recall w(p) denotes the winding number of p.

Suppose by way of contradiction that f has no roots. Then, for any R > 0, the
path f (CR) does not cross the origin. In particular, w( f (CR)) is well-defined.
By Proposition 4, there is an annulus Nδ(CR) such that if C is a circle in Nδ(CR),
then w( f (C)) = w( f (CR)). For each R, pick such an annulus and denote it
N(CR).

Consider the region D = {z ∈ C | 0 < |z| ≤ 2na}. This region is covered by the
collection {N(CR) | 0 < R ≤ 2na} of annuli. Circles from overlapping annuli
must produce images with the equal winding numbers. Because the region D
is connected and covered by annuli, each of which overlaps at least one other
annulus, we can conclude that the winding number of the images of all circles
in D must be the same.

The winding number of f (C2na) is n, by Corollary 2. Since C2na ⊂ D, it follows
that the winding number of images of all circles in D must be n. But by Propo-
sition 2, the winding number of f (C|a0|/2na) is 0, and 0 6= n. Hence we have
found our contradiction. There must exist a root of f in the complex plane.
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