A probabilistic version of the game of zombies and survivors on graphs

Xavier Pérez-Giménez†
joint work with
Anthony Bonato†, Dieter Mitsche* and Paweł Prałat†

†Ryerson University

*Université de Nice Sophia-Antipolis

Graphs @ Ryerson, September 2015
Zombie Policeman
Zombies and survivor: who wants to live forever?

Game rules

- 2 players (1 survivor vs. \(k\) zombies) on vertices of \(G\).
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

Game rules

- 2 players (1 survivor vs. \(k \) zombies) on vertices of \(G \).
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

Game rules
- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

Game rules

- 2 players (1 survivor vs. \(k \) zombies) on vertices of \(G \).
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

Game rules

- 2 players (1 survivor vs. \(k \) zombies) on vertices of \(G \).
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

Game rules

- 2 players (1 survivor vs. \(k \) zombies) on vertices of \(G \).
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

Game rules

- 2 players (1 survivor vs. \(k\) zombies) on vertices of \(G\).
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

Game rules

- 2 players (1 survivor vs. \(k \) zombies) on vertices of \(G \).
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

2 players (1 survivor vs. k zombies) on vertices of G.

Initial position: zombies (random); survivor (deterministic).

At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.

Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

Game rules

- 2 players (1 survivor vs. \(k \) zombies) on vertices of \(G \).
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Game rules

- 2 players (1 survivor vs. \(k \) zombies) on vertices of \(G \).
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

Game rules

- 2 players (1 survivor vs. \(k \) zombies) on vertices of \(G \).
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Game rules

- 2 players (1 survivor vs. \(k \) zombies) on vertices of \(G \).
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Zombies and survivor: who wants to live forever?

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.
Basic definitions

Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : P(k \text{ zombies win}) \geq 1/2 \right\} \]
Basic definitions

Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : \Pr(k \text{ zombies win}) \geq 1/2 \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.
Basic definitions

Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : P(k \text{ zombies win}) \geq 1/2 \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]
Basic definitions

Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : \Pr(k \text{ zombies win}) \geq 1/2 \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]

Trees: \(z(G) = c(G) = 1 \)
Basic definitions

Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : P(k \text{ zombies win}) \geq 1/2 \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]

Trees: \(z(G) = c(G) = 1 \)
Basic definitions

Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : P(k \text{ zombies win}) \geq \frac{1}{2} \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]

Trees: \(z(G) = c(G) = 1 \)
Basic definitions

Zombie number

\[z(G) = \min \{ k \in \mathbb{N} : P(k \text{ zombies win}) \geq 1/2 \} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]

Trees: \(z(G) = c(G) = 1 \)
Basic definitions

Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : \mathbb{P}(k \text{ zombies win}) \geq 1/2 \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]

Trees: \(z(G) = c(G) = 1 \)
Basic definitions

Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : \Pr(k \text{ zombies win}) \geq \frac{1}{2} \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]

Trees: \(z(G) = c(G) = 1 \)
Basic definitions

Zombie number

\[
z(G) = \min \left\{ k \in \mathbb{N} : \Pr(k \text{ zombies win}) \geq 1/2 \right\}
\]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[
Z(G) = \frac{z(G)}{c(G)}
\]

Trees: \(z(G) = c(G) = 1 \)
Basic definitions

Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : P(k \text{ zombies win}) \geq 1/2 \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]

Trees: \(z(G) = c(G) = 1 \)
Basic definitions

Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : P(k \text{ zombies win}) \geq 1/2 \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]

Trees: \(z(G) = c(G) = 1 \)
Basic definitions

Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : P(k \text{ zombies win}) \geq 1/2 \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]

Trees: \(z(G) = c(G) = 1 \)

\(c(G) = 2, \quad z(G) = \Theta(n) \)
Basic definitions

Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : P(k \text{ zombies win}) \geq 1/2 \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]

Trees: \(z(G) = c(G) = 1 \)

\[c(G) = 2, \quad z(G) = \Theta(n) \]
Basic definitions

Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : P(k \text{ zombies win}) \geq 1/2 \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]

Trees: \(z(G) = c(G) = 1 \)

\[c(G) = 2, \quad z(G) = \Theta(n) \]
Basic definitions

Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : P(k \text{ zombies win}) \geq 1/2 \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]

Trees:

- \(z(G) = c(G) = 1 \)
- \(c(G) = 2, \quad z(G) = \Theta(n) \)
Basic definitions

Zombie number

\[z(G) = \min \{ k \in \mathbb{N} : P(k \text{ zombies win}) \geq 1/2 \} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]

Trees: \(z(G) = c(G) = 1 \)

\[c(G) = 2, \quad z(G) = \Theta(n) \]
Basic definitions

Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : P(\text{k zombies win}) \geq 1/2 \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]

Trees: \(z(G) = c(G) = 1 \)

\[c(G) = 2, \quad z(G) = \Theta(n) \]
Basic definitions

Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : \Pr(k \text{ zombies win}) \geq 1/2 \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]

Trees:

- \(z(G) = c(G) = 1 \)

- \(c(G) = 2, \ z(G) = \Theta(n) \)
Basic definitions

Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : P(k \text{ zombies win}) \geq \frac{1}{2} \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]

Trees: \(z(G) = c(G) = 1 \)

\[c(G) = 2, \quad z(G) = \Theta(n) \]
Basic definitions

Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : P\left(k \text{ zombies win} \right) \geq 1/2 \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]

Trees: \(z(G) = c(G) = 1 \)

\(c(G) = 2, \quad z(G) = \Theta(n) \)
Basic definitions

Zombie number
\[z(G) = \min \left\{ k \in \mathbb{N} : P \left(k \text{ zombies win} \right) \geq 1/2 \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead
\[Z(G) = \frac{z(G)}{c(G)} \]

Trees:
- \(z(G) = c(G) = 1 \)
- \(c(G) = 2, \quad z(G) = \Theta(n) \)

\[\vdots \quad n-5 \]
Zombie number

\[z(G) = \min \left\{ k \in \mathbb{N} : P(k \text{ zombies win}) \geq 1/2 \right\} \]

Observe: \(z(G) \geq c(G) \), where \(c(G) \) is the cop number.

Price of being undead

\[Z(G) = \frac{z(G)}{c(G)} \]

Trees:
\[z(G) = c(G) = 1 \]

\[c(G) = 2, \quad z(G) = \Theta(n) \]
Theorem
If $n \geq 27$, then $z(C_n) = 4$ and $Z(C_n) = 2$.

Theorem

If $n \geq 27$, then $z(C_n) = 4$ and $Z(C_n) = 2$.

Proof (idea):
Theorem

If \(n \geq 27 \), then \(z(C_n) = 4 \) and \(Z(C_n) = 2 \).

Proof (idea):

\[
\frac{(n-1)}{2} - 1
\]
Theorem

If \(n \geq 27 \), then \(z(C_n) = 4 \) and \(Z(C_n) = 2 \).

Proof (idea):

\[
(n-1)/2 - 1
\]
Theorem

If $n \geq 27$, then $z(C_n) = 4$ and $Z(C_n) = 2$.

Proof (idea):
Theorem

If \(n \geq 27 \), then \(z(C_n) = 4 \) and \(Z(C_n) = 2 \).

Proof (idea):
Theorem
If \(n \geq 27 \), then \(z(C_n) = 4 \) and \(Z(C_n) = 2 \).

Proof (idea):
Theorem

If $n \geq 27$, then $z(C_n) = 4$ and $Z(C_n) = 2$.

Proof (idea):
Theorem

If \(n \geq 27 \), then \(z(C_n) = 4 \) and \(Z(C_n) = 2 \).

Proof (idea):
Projective plane

Projective plane P_q of order q (q prime power)

Graph G_q

Incidence graph of P_q:
Projective plane

Projective plane P_q of order q (q prime power)

Graph G_q

Incidence graph of P_q:
- (P, L)-bipartite
Projective plane \(P_q \) of order \(q \) (\(q \) prime power)

Graph \(G_q \)

Incidence graph of \(P_q \):
- \((P, L) \)-bipartite
- \(|P| = |L| = q^2 + q + 1\)
Projective plane

Projective plane P_q of order q (q prime power)

Graph G_q

Incidence graph of P_q:
- (P, L)-bipartite
- $|P| = |L| = q^2 + q + 1$
- $(q + 1)$-regular
Projective plane P_q of order q (q prime power)

Graph G_q

Incidence graph of P_q:
- (P, L)-bipartite
- $|P| = |L| = q^2 + q + 1$
- $(q + 1)$-regular
- $\forall p_1, p_2 \in P : |N(p_1) \cap N(p_2)| = 1$
Projective plane P_q of order q (q prime power)

Graph G_q

Incidence graph of P_q:
- (P, L)-bipartite
- $|P| = |L| = q^2 + q + 1$
- $(q + 1)$-regular
- $\forall p_1, p_2 \in P : |N(p_1) \cap N(p_2)| = 1$
- $\forall \ell_1, \ell_2 \in L : |N(\ell_1) \cap N(\ell_2)| = 1$
Theorem

\[z(G_q) = 2q + \Theta(\sqrt{q}). \quad Z(G_q) \sim 2. \]
Theorem

\[z(G_q) = 2q + \Theta(\sqrt{q}). \quad Z(G_q) \sim 2. \]

Initially: \(k_P \) zombies in \(P \) and \(k_L \) zombies in \(L \) \((k = k_P + k_L) \)
Theorem
\[z(G_q) = 2q + \Theta(\sqrt{q}). \quad Z(G_q) \sim 2. \]

Initially: \(k_P \) zombies in \(P \) and \(k_L \) zombies in \(L \) \((k = k_P + k_L) \)

Lemma
- \(k \leq 2q - \omega\sqrt{q} \implies \text{a.a.s.} \quad k_P, k_L \leq q - 1 \)
 (survivor strategy).
Projective plane

Theorem

\[z(G_q) = 2q + \Theta(\sqrt{q}). \quad Z(G_q) \sim 2. \]

Initially: \(k_P \) zombies in \(P \) and \(k_L \) zombies in \(L \) \((k = k_P + k_L) \)

Lemma

- \(k \leq 2q - \omega \sqrt{q} \implies \text{a.a.s. } k_P, k_L \leq q - 1 \)
 (survivor strategy).

- \(k \geq 2q + \omega \sqrt{n} \implies \text{a.a.s. } k_P, k_L \geq q \)
 (zombie strategy).
Projective plane: observation
Survivor cannot stop!
Projective plane: zombies’ strategy

It’s zombies’ turn to move…

$k_R \geq q$

$\text{deg } q+1$

$k_L \geq q$
It’s zombies’ turn to move…

P \hspace{2cm} L

$\text{deg } q+1$

$k_R \geq q$

$\text{degree } q+1$

$k_L \geq q$
It’s zombies’ turn to move…

It's zombies’ turn to move…

Projective plane: zombies’ strategy

Bonato, Mitsche, Pérez-Giménez, Prałat

Zombies and survivors on graphs

G@R 2015
It's zombies' turn to move...

\[P \]

\[L \]

\[k_R \geq q \]

\[\deg q+1 \]

\[k_L \geq q \]
Projective plane: zombies’ strategy

It’s zombies’ turn to move…

\[q + 1 \text{deg} \]

\[k_L \geq q \]

\[k_R \geq q \]

Zombies block all ways of escape with positive probability!

Bonato, Mitsche, Pérez-Giménez, Prałat
Zombies and survivors on graphs
G@R 2015 9 / 19
It’s zombies’ turn to move…

\[P \]

\[L \]

\[k_R \geq q \]

\[\text{deg } q+1 \]

\[k_L \geq q \]
Projective plane: zombies’ strategy

It’s zombies’ turn to move...

Zombies block all ways of escape with positive probability!

\[P \text{ deg } q+1 \Rightarrow k_R \geq q \]

\[L \quad k_L \geq q \]
It’s the survivor’s turn to move…

\[P \quad \text{deg} \quad q+1 \]

\[k_r < q \]

\[L \]

\[k_L < q \]
Projective plane: survivor’s strategy

It’s the survivor’s turn to move...

\[P \]

\[L \]

\[\text{deg } q+1 \]

\[k_r < q \]

\[k_L < q \]
It’s the survivor’s turn to move…

It's the survivor’s turn to move…

P

$deg \ q + 1$

L

$k_r < q$

$k_L < q$

The survivor can always escape for one more step!
It’s the survivor’s turn to move...

\[P \]

\[L \]

\[k_r < q \]

\[k_L < q \]

\[\text{deg } q+1 \]

The survivor can always escape for one more step!
Projective plane: survivor’s strategy

It’s the survivor’s turn to move...

The survivor can always escape for one more step!
Vertices of Q_n are $\{0, 1\}$-strings of length n.

Q_n is (E, O)-bipartite

E strings with even number of 1’s.

O strings with odd number of 1’s.
Theorem

\[z(Q_n) = \frac{2n}{3} + \Theta(\sqrt{n}). \quad Z(Q_n) \sim \frac{4}{3}. \]
Theorem

\[z(Q_n) = \frac{2n}{3} + \Theta(\sqrt{n}). \quad Z(Q_n) \sim \frac{4}{3}. \]

Initially: \(k_E \) zombies in \(E \) and \(k_O \) zombies in \(O \) \((k = k_E + k_O) \)
Theorem

\[z(Q_n) = \frac{2n}{3} + \Theta(\sqrt{n}). \quad Z(Q_n) \sim 4/3. \]

Initially: \(k_E \) zombies in \(E \) and \(k_O \) zombies in \(O \) (\(k = k_E + k_O \))

Lemma

- \(k \leq \frac{2n}{3} - \omega \sqrt{n} \implies \text{a.a.s.} \quad k_E, k_O < \frac{n}{3} \)

(survivor strategy).
Hypercube

Theorem

\[z(Q_n) = \frac{2n}{3} + \Theta(\sqrt{n}). \quad Z(Q_n) \sim 4/3. \]

Initially: \(k_E \) zombies in \(E \) and \(k_O \) zombies in \(O \) \((k = k_E + k_O) \)

Lemma

- \(k \leq \frac{2n}{3} - \omega \sqrt{n} \implies \text{a.a.s.} \quad k_E, k_O < \frac{n}{3} \)
 (survivor strategy).
- \(k \geq \frac{2n}{3} + \omega \sqrt{n} \implies \text{a.a.s.} \quad k_E, k_O > \frac{n}{3} \)
 (zombie strategy).
Hypercube: survivor’s strategy

(The survivor can always find a safe start.)

$S_i =$ set of zombies at distance i from survivor ($|S_1|, |S_2| < n/3$)
Hypercube: survivor’s strategy

(The survivor can always find a safe start.)

\[S_i = \text{set of zombies at distance } i \text{ from survivor } (|S_1|, |S_2| < n/3) \]

At each step:

- If \(S_1 = \emptyset \), then survivor stays put.
- Otherwise, survivor can find a move away from \(S_1, S_2 \).

\[
\begin{array}{c}
E \\
s_{\text{deg } n}
\end{array}
\begin{array}{c}
O \\
S_1 \\
S_2
\end{array}
\]
Hypercube: survivor’s strategy

(The survivor can always find a safe start.)

\[S_i = \text{set of zombies at distance } i \text{ from survivor } \left(|S_1|, |S_2| < \frac{n}{3} \right) \]

At each step:

- If \(S_1 = \emptyset \), then survivor stays put.
- Otherwise, survivor can find a move away from \(S_1, S_2 \).

The survivor can always escape for one more step!
Hypercube: zombies’ strategy

Vector of distances $\vec{d} = (d_1, \ldots, d_k)$

It never increases (after each zombie move).
Hypercube: zombies’ strategy

Vector of distances $\vec{d} = (d_1, \ldots, d_k)$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

Every n steps, \vec{d} decreases with positive probability.
Hypercube: zombies’ strategy

Vector of distances $\vec{d} = (d_1, \ldots, d_k)$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases

Every n steps, \vec{d} decreases with positive probability.
Hypercube: zombies’ strategy

Vector of distances $\vec{d} = (d_1, \ldots, d_k)$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases.

Every n steps, \vec{d} decreases with positive probability.
Vector of distances $\vec{d} = (d_1, \ldots, d_k)$
It never increases (after each zombie move).

Uniform coordinates (shared by all players)
- If the survivor flips a non-uniform coordinate, then \vec{d} decreases

Every n steps, \vec{d} decreases with positive probability.
Hypercube: zombies’ strategy

Vector of distances $\vec{d} = (d_1, \ldots, d_k)$
It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases.
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.
Hypercube: zombies’ strategy

Vector of distances $\vec{d} = (d_1, \ldots, d_k)$
It never increases (after each zombie move).

Uniform coordinates (shared by all players)
- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.
Hypercube: zombies’ strategy

Vector of distances $\vec{d} = (d_1, \ldots, d_k)$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.

Every n steps, \vec{d} decreases with positive probability.
Hypercube: zombies’ strategy

Vector of distances $\vec{d} = (d_1, \ldots, d_k)$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases.
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.
Hypercube: zombies’ strategy

Vector of distances $\vec{d} = (d_1, \ldots, d_k)$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.
Hypercube: zombies’ strategy

Vector of distances $\vec{d} = (d_1, \ldots, d_k)$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.
Hypercube: zombies’ strategy

Vector of distances $\vec{d} = (d_1, \ldots, d_k)$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.
Hypercube: zombies’ strategy

Vector of distances $\vec{d} = (d_1, \ldots, d_k)$
It never increases (after each zombie move).

Uniform coordinates (shared by all players)
- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.

Every n steps, \vec{d} decreases with positive probability.
Grids

G_n

$n \times n$ square grid

T_n

$n \times n$ toroidal grid
Grids

Theorem
For $n \geq 2$, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...
Theorem

For \(n \geq 2 \), \(z(G_n) = 2 \). Hence, \(Z(G_n) = 1 \).

However...

Theorem

\(z(T_n) \geq \sqrt{n}/(\omega \log n) \), while \(c(T_n) = 3 \).
So \(Z(T_n) \geq \sqrt{n}/(\omega \log n) \).
Grids

Theorem

For $n \geq 2$, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

Theorem

$z(T_n) \geq \sqrt{n}/(\omega \log n)$, while $c(T_n) = 3$.

So $Z(T_n) \geq \sqrt{n}/(\omega \log n)$

Goal of the survivor:

![Diagram of a grid with zombies and survivors]
Grids

Theorem
For $n \geq 2$, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

Theorem
$z(T_n) \geq \sqrt{n}/(\omega \log n)$, while $c(T_n) = 3$.
So $Z(T_n) \geq \sqrt{n}/(\omega \log n)$

Goal of the survivor:
Grids

Theorem

For $n \geq 2$, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

Theorem

$z(T_n) \geq \sqrt{n}/(\omega \log n)$, while $c(T_n) = 3$.

So $Z(T_n) \geq \sqrt{n}/(\omega \log n)$

Goal of the survivor:
Theorem
For $n \geq 2$, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

Theorem
$z(T_n) \geq \sqrt{n}/(\omega \log n)$, while $c(T_n) = 3$.
So $Z(T_n) \geq \sqrt{n}/(\omega \log n)$

Goal of the survivor:
Theorem
For \(n \geq 2 \), \(z(G_n) = 2 \). Hence, \(Z(G_n) = 1 \).

However...

Theorem
\[
z(T_n) \geq \sqrt{n}/(\omega \log n), \text{ while } c(T_n) = 3.
\]
So \(Z(T_n) \geq \sqrt{n}/(\omega \log n) \)

Goal of the survivor:
Theorem

For $n \geq 2$, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

Theorem

$z(T_n) \geq \sqrt{n}/(\omega \log n)$, while $c(T_n) = 3$. So $Z(T_n) \geq \sqrt{n}/(\omega \log n)$

Goal of the survivor:
Grids

Theorem

For $n \geq 2$, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

Theorem

$z(T_n) \geq \sqrt{n}/(\omega \log n)$, while $c(T_n) = 3$.
So $Z(T_n) \geq \sqrt{n}/(\omega \log n)$

Goal of the survivor:
Theorem
For $n \geq 2$, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

Theorem
$z(T_n) \geq \sqrt{n}/(\omega \log n)$, while $c(T_n) = 3$.
So $Z(T_n) \geq \sqrt{n}/(\omega \log n)$

Goal of the survivor:
Theorem

For $n \geq 2$, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

Theorem

$z(T_n) \geq \sqrt{n/(\omega \log n)}$, while $c(T_n) = 3$.

So $Z(T_n) \geq \sqrt{n/(\omega \log n)}$

Goal of the survivor:
B \log n
A \log n

\[\text{Torus: survivor's strategy} \]
Torus: survivor’s strategy

\[A \log n \]

\[B \log n \]
Torus: survivor’s strategy

\[A \log n \quad \text{and} \quad B \log n \]
Torus: survivor’s strategy

Bonato, Mitsche, Pérez-Giménez, Prałat

Zombies and survivors on graphs

G@R 2015
Torus: survivor’s strategy

\[A \log n \]

\[B \log n \]
Torus: survivor’s strategy

\[A \log n \]

\[B \log n \]
Torus: survivor’s strategy

\[A \log n \quad \text{and} \quad B \log n \]
Torus: survivor’s strategy

\[A \log n \]

\[B \log n \]
Torus: survivor’s strategy

Bonato, Mitsche, Pérez-Giménez, Prałat

Zombies and survivors on graphs

G@R 2015
Torus: survivor’s strategy

$A \log n$ $B \log n$

Bonato, Mitsche, Pérez-Giménez, Prałat
Zombies and survivors on graphs G@R 2015 17 / 19
Torus: survivor’s strategy

\[A \log n \]

\[B \log n \]
Torus: survivor’s strategy

\[A \log n \quad B \log n \]
Torus: survivor’s strategy

\[A \log n \quad B \log n \]
Torus: survivor’s strategy

$A \log n$

$B \log n$
Torus: survivor’s strategy

\[\log n \]

Bonato, Mitsche, Pérez-Giménez, Prałat

Zombies and survivors on graphs

G@R 2015
Torus: survivor’s strategy

\[A \log n \quad \text{versus} \quad B \log n \]
Torus: survivor’s strategy

\[A \log n \]

\[B \log n \]
Torus: survivor’s strategy

\[A \log n \]

\[B \log n \]
Torus: survivor’s strategy

\[A \log n \]

\[B \log n \]
Torus: survivor’s strategy

\[A\log n \]

\[B\log n \]
Torus: survivor’s strategy

A \log n

B \log n
Torus: survivor’s strategy

$A \log n$

$B \log n$
Torus: survivor’s strategy

\[\log A \quad \log B \]

Bonato, Mitsche, Pérez-Giménez, Prałat
Torus: survivor’s strategy

\[A \log n \quad \text{and} \quad B \log n \]
Torus: survivor’s strategy

\[A \log n \]

\[B \log n \]
Open questions

- Upper bound on $z(T_n)$.
- Mixed cop-zombie model: how many cops are needed to lead a team of zombies?
Thank you