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Abstract

We consider the standard random geometric graph process in which n vertices are
placed at random on the unit square and edges are sequentially added in increasing order
of edge-length. For fixed k ≥ 1, we prove that the first edge in the process that creates a
k-connected graph coincides a.a.s. with the first edge that causes the graph to contain k/2
pairwise edge-disjoint Hamilton cycles (for even k), or (k− 1)/2 Hamilton cycles plus one
perfect matching, all of them pairwise edge-disjoint (for odd k). This proves and extends
a conjecture of Krivelevich and Müller. In the special when case k = 2, our result says
that the first edge that makes the random geometric graph Hamiltonian is a.a.s. exactly
the same one that gives 2-connectivity, which answers a question of Penrose. (This result
appeared in three independent preprints, one of which was a precursor to this paper.) We
prove our results with lengths measured using the `p norm for any p > 1, and we also
extend our result to higher dimensions.

1 Introduction

Many authors have studied the evolution of the random geometric graph on n labelled vertices
placed independently and uniformly at random (u.a.r.) on the unit square [0, 1]2, in which
edges are added in increasing order of length (see e.g. [7]). Penrose [6] proved that the first
added edge that makes the graph have minimum degree k is asymptotically almost surely
(a.a.s., i.e. with probability tending to 1 as n → ∞) the first one that makes it k-connected.
He also asked whether, in the evolution of the random geometric graph, 2-connectivity occurs
a.a.s. precisely when the first Hamilton cycle is created. The setting was not only for Euclidean
edge lengths, but also for the `p norm for any p > 1. As a first step towards answering
Penrose’s question, Dı́az, Mitsche and the second author showed in [3] that the property of
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being Hamiltonian has a sharp threshold at r ∼
√

log n/(θn) (here θ denotes the area of the
unit ball with respect to the norm used), which coincides asymptotically with the threshold
for k-connectivity for any constant k. On the other hand, a more general result is already
known for the evolution of the random graph G on n labelled vertices, in which edges are
added one by one. Bollobás and Frieze showed in [2] that a.a.s. as soon as G has minimum
degree k, it also contains bk/2c edge-disjoint Hamilton cycles plus an additional edge-disjoint
perfect matching if k is odd, where k is any constant positive integer. The main result in
the present paper is that the analogue of Bollobás and Frieze’s result holds for the random
geometric graph. That is, we show that, in the evolution of the random geometric graph,
a.a.s. as soon as the graph becomes k-connected, it immediately contains bk/2c edge-disjoint
Hamilton cycles plus one additional perfect matching if k is odd. This result applies to the
geometric graph in a unit hypercube of d ≥ 2 dimensions, and for the `p norm, 1 < p ≤ ∞.
This proves and extends a conjecture of Krivelevich and the first author [4], who conjectured
the result for even values k. The special case k = 2 of our result answers Penrose’s question.

Three independent but somewhat similar proofs for Penrose’s question appeared in pre-
prints by Balogh, Bollobás and Walters [1], by Krivelevich and Müller [4] and by Pérez-
Giménez and Wormald [8]. The present paper presents the proof in [8] (which is only for
dimension 2 but does cover arbitrary k) and additionally includes the extension to arbitrary
dimension d making use of a result in [4]. Part of the original argument in [8] is considerably
shortened here, by excluding probabilistically some vertex configurations which were treated
in [8] by proving a stronger result on packing linear forests in graphs.

Let X = (X1, . . . , Xn) be a random vector, where each Xi is a point in [0, 1]2 chosen
independently with uniform distribution. Given X and a radius r = r(n) ≥ 0, we define the
random geometric graph G (X; r) as follows: the vertex set of G (X; r) is {1, . . . , n} and there
is an edge joining i and j whenever ‖Xi − Xj‖p ≤ r. Here ‖ · ‖p denotes the standard `p
norm, for some fixed 1 < p ≤ ∞. Unless otherwise stated, all distances in [0, 1]2 are measured
according to the `p norm (i.e. d(X,Y ) = ‖X−Y ‖p). Let θ be the area of the unit `p-ball (e.g.
θ = π for p = 2, and 2 ≤ θ ≤ 4 for all 1 ≤ p ≤ ∞).

A continuous-time random graph process
(
G (X; r)

)
0≤r<∞ is defined in a natural way, by

first choosing the random set of points X and then adding edges one by one as we increase
the radius r from 0 to ∞.

Theorem 1. Consider the random graph process
(
G (X; r)

)
0≤r<∞ for any `p-normed metric

on [0, 1]2, 1 < p ≤ ∞, and let k be a fixed positive integer.

(i) For even k ≥ 2, a.a.s. the minimum radius r at which the graph G (X; r) is k-connected
is equal to the minimum radius at which it has k/2 edge-disjoint Hamilton cycles.

(ii) For odd k ≥ 1, a.a.s. the minimum radius r at which the graph G (X; r) is k-connected is
equal to the minimum radius at which it has (k − 1)/2 Hamilton cycles and one perfect
matching, all of them pairwise edge-disjoint. (Here asymptotics are restricted to even
n.)

The reason that we restrict ourselves to the `p norm with p > 1 to measure the edge-
lengths in Theorem 1 (as opposed to a completely arbitrary norm), is that this restriction is
imposed by the results of Penrose that we invoke in the proof of Theorem 1.

The next section contains the basic geometric definitions and probabilistic statements re-
quired in the argument, including proofs that several properties hold a.a.s. Then, in Section 3,
we prove the main theorem, by supplying the required construction of Hamilton cycles (and
perfect matching) in the random geometric graph deterministically, assuming the properties
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that were shown to hold a.a.s. Finally, in Section 4, we extend the argument to general
dimension.

Throughout this paper, we use NG(v) to denote the set of neighbours of a vertex v in a
graph G (the subscript G may be omitted when it is clear from the context).

2 Asymptotically almost sure properties

Let k ≥ 1 be a fixed integer, and define m = 2k − 3 if k ≥ 2 and m = 0 if k = 1. We state a
result which is a consequence of Theorem 8.4 in [7].

Proposition 2. In the random process
(
G (X; r)

)
0≤r<∞, let rk be the smallest r such that

G (X; r) is k-connected. Then,

θnrk
2 − log n−m log log n (1)

is bounded in probability.

Here, we define some properties of the random geometric graph that hold a.a.s. and that
will turn out to be sufficient for our construction of disjoint Hamilton cycles. In view of
Proposition 2, we shall mainly focus our analysis to r satisfying θnr2 = log n+m log log n+O(1)
or sometimes just θnr2 ∼ log n.

Henceforth we assume that the points in X are in general position—i.e. they are are all
different, no three of them are collinear, and all distances between pairs of points are strictly
different—since this holds with probability 1. The first lemma shows that sets of vertices with
relatively few common neighbours are rare.

Lemma 3. For any small enough constant η > 0 and any r such that θnr2 = log n +
m log logn + O(1), and constant integers j ≥ 2 and K ≥ j + k, the random geometric
graph G (X; r) a.a.s. satisfies the following property. Every set J of j vertices such that
maxu,v∈J{d(Xu, Xv)} ≤ ηr and maxu∈J |NG (X;r)(u)| ≤ K has at least k common neighbours
not in J .

Proof. The vertices v1, . . . , vN form a bad configuration if there are j1, j2, j3, j4 such that
N = j1 + j2 + j3 + j4 and the following conditions are met:

(b1) 2 ≤ j1 ≤ K + 1, j2 ≤ k − 1, j3 ≤ K and j4 ≤ K;

(b2) Xv1 is closer to the boundary of [0, 1]2 than Xv2 ;

(b3) ‖Xv1 −Xvi‖2 ≤ ‖Xv1 −Xv2‖2 ≤
√

2ηr for i = 2, . . . , j1;

(b4) X ∩Bp(Xv1 , r − ‖Xv1 −Xv2‖2 ·
√

2) = {Xv1 , . . . , Xvj1+j2
};

(b5) X ∩Bp(Xv1 , r) = {Xv1 , . . . , Xvj1+j2+j3
};

(b6) X ∩ (Bp(Xv2 , r) ∪Bp(Xv1 , r)) = {Xv1 , . . . , Xvj1+j2+j3+j4
}.

Here and elsewhere in the paper, Bp(x, s) := {y ∈ R2 : ‖x − y‖p < s} denotes the lp-ball
around x of radius s. See Figure 1 for a depiction of a bad configuration. Observe that if a
set J violating the conclusion of the lemma exists, then there must be a bad configuration.
To see this, let us think of {v1, . . . , vj1} as J , where we assume w.l.o.g. that Xv1 and Xv2
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∂[0, 1]2

Xv1 ρ

τ

Xv2

Bp(Xv1 , r − ρ
√

2)

Bp(Xv1 , r) \Bp(Xv1 , r − ρ
√

2)

Bp(Xv2 , r) \Bp(Xv1 , r)

Figure 1: Visual description of a bad configuration. Points Xv3 , . . . , Xvj1
must lie in

B2(Xv1 , ρ). The points Xvj1+1 , . . . , Xvj1+j2
must lie in Bp(Xv1 , r − ρ

√
2). The points

Xvj1+j2+1 , . . . , Xvj1+j2+j3
lie in Bp(Xv1 , r)\Bp(Xv1 , r−ρ

√
2), and Xvj1+j2+j3+1 , . . . , Xvj1+j2+j3+j4

lie in Bp(Xv2 , r) \Bp(Xv1 , r).

realise the Euclidean diameter of {Xv : v ∈ J} and Xv1 is closer to the boundary of [0, 1]2

than Xv2 is. Also let the vertices vj1+1, . . . , vj1+j2+j3+j4 be defined from the conditions (b4–
6). Note that, with this construction, (b2–6) are trivially satisfied, and also 2 ≤ j1 =
|J | ≤ K + 1. Moreover, j2 ≤ k − 1 because |

⋂j1
i=1NG (X;r)(vi)| ≤ k − 1 (by our choice of J)

and Bp(Xv1 , r − ‖Xv1 − Xv2‖2 ·
√

2) ⊆
⋂j1
i=1Bp(Xvi , r) by condition (b3) and the fact that

‖x‖p ≤
√

2‖x‖2 for all x ∈ R2 and all p ≥ 1. Finally, j3 ≤ K and j4 ≤ K because the degrees
of v1 and v2 are at most K. Hence condition (b1) is also satisfied.

We distinguish three types of bad configurations according to the position of Xv1 in [0, 1]2:
corner bad configurations are those in which Xv1 is at distance at most r from two of the four
sides of [0, 1]2; side bad configurations are those in which Xv1 is at distance at most r from
exactly one of the four sides of [0, 1]2; all other bad configurations are referred to as interior
bad configurations.

Let T0, T1 and T2 denote respectively the number of corner, side and interior bad configu-
rations. An easy calculation shows that the expected number of vertices of degree at most K
near the corners is o(1), so that also T0 = 0 a.a.s.

Let us now consider ET1. Given a bad configuration, let τ ≤ r denote the distance of Xv1

from the boundary and let ρ := ‖Xv1 − Xv2‖2. It can be seen that, provided η was chosen
sufficiently small, we have

c1ρr ≤ area
(
[0, 1]2 ∩Bp(Xv2 , r) \Bp(Xv1 , r)

)
≤ c2ρr,

and
c1ρr ≤ area

(
[0, 1]2 ∩Bp(Xv1 , r) \Bp(Xv1 , r − ρ

√
2)
)
≤ c2ρr,

for suitably chosen constants c1, c2 > 0 (where c1 = 1/100, c2 = 100 will do for our purposes).
We shall also use the observation that

area([0, 1]2 ∩Bp(Xv1 , r)) ≥
θ

2
(r2 + rτ).
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We see that(
1− area([0, 1]2 ∩ (Bp(Xv1 , r) ∪Bp(Xv2 , r)))

)n−(j1+j2+j3+j4)
≤

(
1− θr2/2− θrτ/2− c1rρ

)n−4K
≤ 2 exp

[
−θnr2/2− θnrτ/2− c1nrρ

]
,

where the second inequality holds for n sufficiently large. Shortly, we will also use the bounds
that the area of [0, 1]2 ∩B2(Xv1 , ρ) is at most πρ2 and that of [0, 1]2 ∩Bp(Xv1 , r − ρ

√
2) is at

most θr2. In this way, we can bound ET1 by summing over all possible choices of v1, . . . , vN
the probability that they form a bad configuration. This probability can be obtained by
integrating over τ and ρ the probability that the points {Xv3 , . . . , XvN } lie in their respective
regions according to (b3–6) (using also the previous bounds on the area of these regions).
Integration over ρ is achieved by changing to polar coordinates, and we use the fact that the
probability density function of the distance between Xv1 and the closest side of [0, 1]2 is at
most 4).

ET1 ≤
∑

8nj1+j2+j3+j4
∫ r

0

∫ √2ηr
0

(
πρ2
)j1−2 (θr2)j2 (c2rρ)j3+j4

× exp

[
−θnr

2

2
− θnrτ

2
− c1nrρ

]
πρ dρ dτ

=O

(∑
nj1+j2+j3+j4r2j2+j3+j4

∫ r

0

∫ √2ηr
0

ρ2j1+j3+j4−3 exp

[
−θnr

2

2
− θnrτ

2
− c1nrρ

]
dρ dτ

)
,

where both sums are over all j1, . . . , j4 that satisfy (b1) above. Applying the substitutions
s = c1nrρ and t = θnrτ/2, we get∫ r

0

∫ √2ηr
0

ρ2j1+j3+j4−3e−θnrτ/2−c1nrρdρdτ

=

∫ θnr2/2

0

∫ c1
√
2ηnr2

0

(
s

c1nr

)2j1+j3+j4−3
e−s−t

ds

c1nr

2dt

θnr

= O

(
(nr)−(2j1+j3+j4−1)

∫ θnr2/2

0

∫ c1
√
2ηnr2

0
s2j1+j3+j4−3e−s−t ds dt

)
= O

(
(nr)−(2j1+j3+j4−1)

)
.

Since θnr2 = log n + m log log n + O(1), we have e−θnr
2/2 = O

(
n−1/2 log−m/2 n

)
. Putting

everything together, we find

ET1 = O
(∑

n−j1+j2+1r−2j1+2j2+1n−1/2 log−m/2 n
)

= O
(∑

(nr2)j2−j1rn1/2 log−m/2 n
)

= O
(∑

(log n)j2−j1+(1−m)/2
)

= O
(
log−1 n

)
= o(1),

using nr2 = Θ(log n) and n1/2r = Θ(log1/2 n) to arrive at the third line, and j1 ≥ 2, j2 ≤ k−1,
m ≥ 2k − 3 so that j2 − j1 + (1−m)/2 ≤ −1 to arrive at the last line (together with the fact
that we are summing over finitely many choices of the js).
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It remains to show that T2 = 0 a.a.s. The computations are fairly similar to these in the
analysis of T1 (the main difference being that we do not need the parameter τ), and we omit
them. We now get

ET2 = O

(∑
nj1+j2+j3+j4r2j2+j3+j4

∫ √2ηr
0

ρ2j1+j3+j4−3 exp
[
−θnr2 − cnrρ

]
dρ

)
.

This is o(1), by computations similar to those for ET1.

For the following definitions, we fix δ > 0 to be a small enough constant and assume r → 0.
We tessellate [0, 1]2 into square cells of side δ′r = d(δr)−1e−1. (Note that δ′ is not constant,
but δ′ ≤ δ and δ′ → δ). Let C be the set of cells, and let GC be an auxiliary graph with vertex
set C and with one edge connecting each pair of cells c1 and c2 iff all points in c1 have distance
at most r from all points in c2. Note that we shall use the term adjacent cells to refer to
cells which are adjacent vertices of the graph of cells GC , while cells sharing a side boundary
will be described as being topologically adjacent. Let ∆ be the maximum degree of GC . By
construction, ∆ is a constant only depending on δ and the chosen `p norm.

We may assume that each point in X lies strictly in the interior of a cell in the tesselation,
since this happens with probability 1. Let M be a large enough but constant positive integer
(its choice will only depend on ∆, thus on δ, and also on k and `p). A cell in C is dense if
it contains at least M points of the random set X, sparse if it contains at least one, but less
than M , points in X, and empty if it has no points in X. Let D ⊆ C be the set of dense cells.
Note that D 6= ∅, since the total number of cells is |C| = Θ(n/ log n), so at least one must
contain Ω(log n) points in X.

A set of cells is said to be connected if it induces a connected subgraph of GC . (For δ
small enough, this includes the situation where the union of cells is topologically connected.)
The area of a set of cells is simply the area of the corresponding union of cells. A set of cells
touches one side (or one corner) of [0, 1]2 if it contains a cell which has some boundary on
that side (or corner) of the unit square.

Lemma 4. For any constants δ > 0 and α > 0 and for any r satisfying θnr2 ∼ log n, the
following statements hold a.a.s.

1. All connected sets of cells of area at least (1 + α)θr2 contain some dense cell.

2. All connected sets of cells of area at least (1 + α)θr2/2 touching some side of [0, 1]2

contain some dense cell.

3. All cells contained inside a 5r × 5r square on each corner of [0, 1]2 are dense.

Proof. Recall that the area of each cell is δ′2r2. Then, in order to show the first statement in the
lemma, it suffices to consider all connected sets of cells with exactly s = d(1+α)θ/δ′2e = Θ(1)
cells. Let S be such a set of cells. The probability that S has no dense cell is at most

(M−1)s∑
t=0

(
n

t

)
(sδ′2r2)t(1− sδ′2r2)n−t = O

(
e−(1+α)θr

2n
) (M−1)s∑

t=0

(r2n)t

= O
(
n−(1+α)+o(1) log(M−1)s n

)
. (2)

To conclude the first part of the proof, multiply the probability above by the number Θ(1/r2) =
Θ(n/ log n) of connected sets of s cells.
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By a completely analogous argument, if S has area only d(1 + α)θ/δ′2e/2 and touches
some side of [0, 1]2, the probability that it has no dense cell is O(n−(1+α)/2)+o(1) log(M−1)s n.
However, the number of such sets is only Θ(

√
n/ log n).

Finally, there is a bounded number of cells inside any of the 5r×5r squares on the corners,
and each individual cell is dense with probability 1− o(1).

A set of cells is small if it can be embedded in a 16 × 16 grid of cells, and it is large
otherwise. Consider the subgraph GC [D] of GC induced by dense cells, and let D0 be the set of
dense cells which are not in small components of GC [D] (we shall see that D0 forms a unique
large component in GC [D]). Most of the trouble in our argument comes from cells which are
not adjacent to any dense cell in D0, so let B = C \ (D0 ∪N(D0)), and call the cells in B bad
cells. Also, let us denote components of GC [B] as bad components. Note that by construction
all cells in N(B) \ B must be sparse (or empty) but adjacent to some cell in D0, while B itself
may contain both sparse and dense cells. Figure 2 illustrates some of these definitions.

Figure 2: Example of tesselation of [0, 1]2 into cells. Shaded cells represent dense cells (i.e.
cells in D), while the white ones are either sparse or empty cells. The graph GC [D] induced by
the dense cells has two components: one large (light gray cells) and one small (dark gray cells),
so D0 is precisely the set of light gray cells. The bad cells (i.e. cells in B) are the ones enclosed
by the thicker black countour, and GC [B] consists of one single small (bad) component. This
bad component has both dense and non-dense cells.

Lemma 5. For a small enough constant δ > 0 and for any r satisfying θnr2 ∼ log n, the
following holds a.a.s.

1. All components of GC [D] are small except for one large component formed by precisely
the cells in D0.

2. GC [B] has only small components.

Proof. First, we claim that the following statements are a.a.s. true. (Recall that “connected”
is defined in terms of the graph GC , not topological adjacency.)
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1. For any large connected set of cells S such that N(S) does not touch all four sides of
[0, 1]2, N(S) \ S must contain some dense cell.

2. For any pair of connected sets of cells S1 and S2 not adjacent to each other (i.e. S2 ∩
N(S1) = ∅) and such that both N(S1) and N(S2) touch all four sides of [0, 1]2, N(S1)\S1
or N(S2) \ S2 must contain some dense cell.

As an immediate consequence of this claim, by considering the maximal connected sets of
dense cells, we deduce that GC [D] must have a unique large component, consisting of all cells
in D0 (note that D0 6= ∅ by statement 3 in Lemma 4). Moreover, N(D0) must touch all four
sides of [0, 1]2. Now suppose that GC [B] has some large component S. By definition N(S) \ S
contains only sparse cells. Then, by the first part of the claim, N(S) must touch the four sides
of [0, 1]2. Hence, we apply the second part of the claim to S and D0 to deduce that such large
S cannot exist.

It just remains to prove the initial claim. Let S be a connected set of cells. Observe that⋃
N(S) is topologically connected (and in particular N(S) is a connected set of cells), and

that the outer boundary γ of
⋃
N(S) is a simple closed polygonal path along the grid lines in

[0, 1]2 defined by the tessellation. If we remove from γ the segments that coincide with some
side of [0, 1]2, each connected polygonal path that remains is called a piece of γ. Note that
N(S) \ S need not be a connected set of cells. However all cells in N(S) along the same piece
of γ must be contained in the same topological component of

⋃
(N(S) \ S), and thus in the

same connected component of GC [N(S) \ S].
The argument comprises several cases. For each case, a lower bound on the area of some

connected component of GC [N(S) \ S] is given by finding some disjoint subsets of [0, 1]2 of
large enough area contained in the union of cells in that component. Then, Lemma 4 ensures
that N(S) \ S contain at least one dense cell.

Given a cell c, let B↗(c) be the set of points at distance at most (1 − 4δ′)r from the top
right corner of c and above and to the right of that corner. The sets B↖(c), B↘(c) and B↙(c)
are defined analogously replacing (top, above, right) by (top, above, left), (bottom, below,
right) and (bottom, below, left) respectively. Note that B↗(c), B↖(c), B↘(c) and B↙(c) are
disjoint and contained in

⋃
(N(c) \ {c}).

Case 1. Let S ⊆ C be a connected set of cells which is not small and such that N(S) does
not touch any side of [0, 1]2. Since S is not small, assume without loss of generality that its
vertical extent is greater than 16δ′r. Let c1, c2, c3, c4 be respectively the topmost, bottommost,
leftmost and rightmost cells in S (possibly not all different and not unique). Let A→ be any
rectangle of height 16δ′r and width (1 − 20δ′)r glued to the right of c4 and between the top
of c1 and the bottom of c2. Also choose a similar rectangle A← of the same dimensions glued
to the left of c3, and let A↑ and A↓ be rectangles of height (1− 4δ′)r and width δ′r placed on
top of, and below, the cells c1 and c2 respectively. By construction, B↗(c1), B↖(c1), B↘(c2),
B↙(c2), A↑, A↓, A← and A→ are disjoint and are contained in the same topological component
of
⋃

(N(S) \ S) (i.e. the one that touches γ), which thus has area at least

θ(1− 4δ′)2r2 + 2δ′r(1− 4δ′)r + 32δ′r(1− 20δ′)r ≥ θr2(1 + δ′/3).

Hence, by Lemma 4, N(S) \ S must contain some dense cell.

Case 2. Let S ⊆ C be a connected set of cells which is not small and such that N(S) touches
only one side of [0, 1]2 (assume it is the bottom side). This is very similar to Case 1, so we
just sketch the main differences in the argument.
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If the vertical extent of S is greater than 16δ′r, then proceed as in Case 1 but only consider
the sets B↗(c1), B↖(c1), A↑, A← and A→. Otherwise, the horizontal extent of S must be
greater than 16δ′r, and we consider instead the sets B↗(c4), B↖(c3), A

′
↑, A

′
← and A′→. Here,

A′← and A′→ are rectangles of height δ′r and width (1 − 4δ′)r placed to the left and right of
cells c3 and c4 respectively, and A′↑ is any rectangle of height (1−20δ′)r and width 16δ′r glued
on top of c1 and strictly between the left side of c3 and the right side of c4. In both cases,
we deduce that the topological component of

⋃
(N(S) \ S) that touches the upper piece of γ

has area at least (1 + δ′/6)θr2/2. Since some cells in this component touch one side of [0, 1]2,
Lemma 4 implies that N(S) \ S must contain some dense cell.

Case 3. Let S ⊆ C be a connected set of cells which is not small. Suppose first that N(S)
touches exactly two sides of [0, 1]2 which are adjacent (say the bottom and the left sides of
[0, 1]2). If the horizontal extent of S is at most 4r, then N(S) \ S has some cell inside the
5r × 5r square on the bottom left corner of [0, 1]2. But these cells are all dense by Lemma 4
and we are done. Hence we can assume that S has horizontal extent greater than 4r. In the
other cases that N(S) touches two non-adjacent sides or three sides of [0, 1]2, we can assume
without loss of generality that N(S) touches the left and right sides of [0, 1]2 but not the
top side. Therefore, in all the cases considered, S must contain some cells intersecting each
of the five first vertical stripes of width r at the left side of [0, 1]2. Let c1, c2, c3, c4 and c5
be the uppermost cells in S intersecting each of the five vertical stripes. These cells are not
necessarily all different, but for each c of these, either B↖(c) or B↗(c) is completely contained
in the corresponding strip. Thus, the topological component of

⋃
(N(S) \ S) that touches the

upper piece of γ has area at least 5(1−4δ′)2θr2/4 > (1+1/8)2θr2, and by Lemma 4, N(S)\S
must contain some dense cell.

Case 4. Let S1 and S2 be connected sets of cells not adjacent to each other (i.e. S2∩N(S1) = ∅)
and such that both N(S1) and N(S2) touch all four sides of [0, 1]2. Note that by Lemma 4 all
cells inside the 5r× 5r square on the top left corner of [0, 1]2 are dense. Assume that none of
these cells belongs to N(S1) \ S1 or N(S2) \ S2 (otherwise we are done). It could happen that
these cells in the top left square are either all in S1 or all in S2. Assume they are not in S1.
Then consider, as in Case 3, the uppermost cells c1, c2, c3, c4 and c5 in S1 intersecting each
of the five first vertical stripes of width r at the left side of [0, 1]2. The same argument shows
that the topological component of

⋃
(N(S1) \ S1) that touches the upper left piece of γ has

area at least (1 + 1/8)2θr2, and Lemma 4 completes the proof.

Finally, we need to show that bad components a.a.s. have some properties to be used in the
construction of the Hamilton cycles. Given a component b of GC [B], let J = J(b) ⊆ {1, . . . , n}
be the set of indices of points in X contained in some cell of b. Moreover, for any r′, consider
the set J ′ = J ′(b, r′) = NG (X;r′)(J) \ J (i.e. the set of strict neighbours of J in a random
geometric graph of radius r′).

Lemma 6. For a small enough constant δ > 0, and for any r and r′ satisfying θnr2 ∼ log n
and r ≤ r′ ≤ (1 + 1/32)r, the following is a.a.s. true. For each small component b of GC [B],
there exists a connected set of dense cells R(b) ⊆ D0 of size 0 < |R(b)| ≤ 10/δ2 such that

1. for every i ∈ J ′(b, r′), the cell containing Xi is adjacent to some cell in R(b), and

2. R(b) ∩ R(̃b) = ∅ and J ′(b, r′) ∩ J ′(̃b, r′) = ∅, for any other small component b̃ of GC [B].
different from b.

Proof. Let b be a small component of GC [B], and let g be any 16× 16 grid covering b. Let O
denote the geometric centre of the grid g, and let S be the set of cells which have some point
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at distance between 3r/4 and 3r/2 from O. Take as R(b) the subset R = S ∩ D formed by
the dense cells in S. This set will be shown to have all the desired properties. (Note that the
size of R is |R| ≤ |S| < 10/δ2.)

Consider a coarser tessellation of [0, 1]2 into larger squares of side b1/(16δ′)cδ′r (each square
containing exactly b1/(16δ′)c2 cells). We refer to each square both as a subset of [0, 1]2, and
as the set of cells it contains. Let Q be the set of squares of the coarser tessellation that
contain at least one point at distance exactly 5r/4 from O. By construction, all squares in Q
are contained inside S. Moreover, we claim that all squares in Q contain some dense cell. To
show this, suppose first that N(b) does not touch any side of [0, 1]2. In fact, by choosing δ
sufficiently small, we can guarantee that each square q ∈ Q has no intersection with N(b) \ b,
and thus q ∪ (N(b) \ b) is a connected set of cells of area at least

θ(1− 34δ′)2r2 + b1/(16δ′)c2δ′2r2 ≥ (θ + 1/257)r2.

Hence, assuming that statement 1 in Lemma 4 holds, q ∪ (N(b) \ b) must contain some dense
cell, which must be in q since N(b) \ b does not contain any. The cases that N(b) touches one
or two sides of [0, 1]2 are dealt with analogously by using statements 2 and 3 in Lemma 4.

Since the union of squares in Q is topologically connected, and each pair of cells lying in
topologically adjacent squares of Q are also adjacent in GC , the dense cells in squares of Q
induce a connected set of cells. Moreover, for any other cell c in S there is some square q ∈ Q
such that c is adjacent to all cells in q. Hence, N(R) ⊇ S, and also R induces a connected set
of cells. Since R cannot be embedded in a 16× 16 grid of cells, R must be contained in D0.

Now consider any vertex i ∈ J ′ = J ′(b, r′). If d(Xi, O) ≤ 3r/8, then the cell c containing Xi

must be in N(b)\ b. Therefore, since b is a component of GC [B], c must be sparse but adjacent
to some dense cell d ∈ D0. By construction, any point in d must be at distance between
(1 − 34δ′)r and (11/8 + 2δ′)r from O, so d ∈ R. Otherwise, suppose that d(Xi, O) > 3r/8.
We also have d(Xi, O) ≤ (1 + 1/32 + 16δ′)r, since i ∈ J ′. Then the cell c containing Xi must
be adjacent to all cells in some square q ∈ Q, and in particular to some dense cell in R.

To verify the other requirements, defineQ′ to be the set of squares of the coarser tessellation
with some point at distance exactly 7r/4 from O. The same argument we used for Q shows
that all squares in Q′ contain some dense cell. Let R′ be the set of dense cells in squares of
Q′. Then it is immediate to verify that any point in a cell c of some other small component
b̃ 6= b of GC [B] must be at distance at least 41r/16 from O since otherwise c would be adjacent
to some cell in b, R or R′. All remaining statements follow easily from that.

3 Building Hamilton cycles and a perfect matching

A factorisation of a graph is the set of subgraphs induced by a partition of the edge set.
A hamiltonian decomposition of a graph is a factorisation in which at most one subgraph is
a perfect matching, and all the remaining ones are Hamilton cycles. The construction of a
hamiltonian decomposition in the following lemma is well known (since 1892). It is attributed
to Walecki by Lucas [5]. We also need the decomposition to contain a transversal, by which we
mean a matching that contains an edge of each of the Hamilton cycles in the decomposition.
(Note that the transversal does not contain an edge of the perfect matching.)

Lemma 7. Every complete graph has a hamiltonian decomposition with a transversal.

Note that the number of Hamilton cycles in such a decomposition of Kk+1 will be bk/2c, and
thus the transversal is a not-quite-perfect matching.
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Proof. First, for k even, consider the complete graph Kk+1 on the vertices {0, 1, . . . , k− 1, ∗}.
We shall first colour the edges of Kk+1. Expressions referring to vertex labels other than ∗
are interpreted mod k and expressions referring to colour labels are mod k/2. (In this paper,
mod denotes taking the remainder on division.)

For each pair of vertices u and v in {0, 1, . . . , k − 1}, assign the colour

d(u+ v)/2e (3)

(mod k/2 of course) to the edge uv. Also, assign colour i to the edges from ∗ to both vertices
i and i + k/2. It is easy to check that, for each i ∈ {0, 1, . . . , k/2 − 1}, the edges receiving
colour i form a (k + 1)-cycle (v0, . . . , vk) where

v0 = ∗, v1 = i, vt+1 = vt + (−1)tt, ∀t ∈ {1, . . . , k − 1},

or equivalently
v0 = ∗, vt = i− (−1)tbt/2c, ∀t ∈ {1, . . . , k}.

Thus, the colouring induces a factorisation of Kk+1 into k/2 Hamilton cycles of colours
0, 1, . . . , k/2− 1, giving the required hamiltonian decomposition. See Figure 3.

Figure 3: One factor in a hamiltonian decomposition. Other factors are obtained by rotating
the circle.

When k is congruent to 2 mod 4, the set of edges {2i, 2i + 1} (i = 0, . . . , k/2 − 1) is
a transversal. When k is divisible by 4, one transversal uses the edges {2i, 2i + 1} (i =
0, . . . , k/4−1), the edge from ∗ to k/2, and the edges {k/2+2i−1, k/2+2i} (i = 1, . . . , k/4−1).

For odd k, a perfect matching needs to be included. There is a similar colouring scheme,
using the colours 0, 1, . . . , (k−1)/2, where colours are taken mod (k+1)/2. In this case, colour
d(u + v mod k)/2e is on the edge uv (note we assume by convention that u + v mod k ∈
{0, . . . , k − 1}), each colour i (i ∈ {1, . . . , (k − 1)/2}) is on the edge from i to ∗ , and each
colour (k+ 1)/2− i (i ∈ {0, . . . , (k− 1)/2}) is on the edge from k− i to ∗. The edges of colour
0 form a perfect matching, and each of the other colours gives a Hamilton cycle. Finally, the
transversal for odd k is easily found, similar to the even k case, using more or less every second
edge of the form {i, i+ 1}.
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In the remainder of this section, we use the results in the earlier lemmas to prove Theo-
rem 1. We first give a complete proof for k even, and then provide the extra pieces of argument
required for k odd.

(i) Proof for k even.

Let ε > 0 be arbitrarily small. Recall the definitions of m and rk in the beginning of
Section 2. In view of Proposition 2, we can choose a large enough constant λ > 0 such that,
by setting

rl =

√
log n+m log log n− λ

θn

we can guarantee that

Pr

(
rl ≤ rk ≤

√
log n+m log log n+ λ

θn

)
> 1− ε.

Hence, looking at the evolution of G (X; r) for 0 ≤ r < ∞, the probability that it becomes
k-connected at some radius r satisfying the condition in Lemma 3 is greater than 1 − ε.
Let us condition upon this event. Then, by the results in Section 2, we may assume that the
properties described in Lemmas 5 and 6 hold for r = rl and some δ, and also that the property
in Lemma 3 holds for r = rk, η = 32δ, K = 2k+k2 and all 2 ≤ j ≤ k. So we may assume X to
be an arbitrary fixed set of n points in [0, 1]2 in general position and satisfying these properties.
The proof is completed by giving a deterministic construction of k/2 edge-disjoint Hamilton
cycles for the geometric graph G (X; rk). Most edges will be of length at most rl but we shall
use a few of length between rl and rk. (The last edges creating k-connectivity arrive during
this period, and they are of course necessary to construct k/2 edge-disjoint Hamilton cycles.)
We define the edges of each Hamilton cycle by colouring some of the edges of G (X; rk), using
colours 1, . . . , k/2, such that each of these colour classes induces a Hamilton cycle.

We take r = rl (except at special points in the argument) and define GC , D, B and so on
accordingly (see Section 2). Let T be a spanning tree of the largest component D0 of GC [D].
Next, double each edge of T to get an Eulerian multigraph F . The vertex degrees in T are
bounded above by ∆, so those in F are bounded above by 2∆. Next, pick an Eulerian circuit
C of F .

Henceforth, we have no need to consider points in [0, 1]2 that are not members of X. So,
points in X contained in some cell c will simply be referred to as points in c, and they will
often be identified with their corresponding vertices in G (X; rl) or G (X; rk). Also, the term
dense cell will refer only to cells in D0, thus excluding these dense cells contained in bad
components. For descriptive purposes, we split the rest of the argument into two parts, first
treating the case that there are no bad cells, i.e. B is empty. For this we only need the edges
of G (X; rl). Then we will show how the construction is easily modified to handle the bad
components, using some edges of G (X; rk).

Part 1. B is empty.

In this case, the rest of the proof involves two steps, which will be used in different forms
during the later arguments.

Step 1. Turning the circuits into cycles

The subgraph of G (X; rl) induced by the points contained in any dense cell is complete
and has many more than k vertices. Lemma 7 provides k/2 edge-disjoint Hamilton cycles
in this subgraph. In fact, it provides more; we just choose a subset of the Hamilton cycles
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that are given by that lemma. The separate cycles in all the dense cells will be ‘broken’ and
rejoined together using C as a template. In the following discussion we assume C is oriented,
so we may speak of incoming and outgoing edges of C with respect to a cell.

For any dense cell c, the deletion of c from C breaks C up into a number of paths Pi. For
colour 1, do the following. Associate each path Pi with an edge zi that joins two points in
c and has already been coloured 1, using a different edge zi for each path Pi. Uncolour the
edges zi, and associate the outgoing and incoming edges of the path Pi (with respect to the
cell c) each with an endpoint of zi. After doing the same for all dense cells, every edge cd of
C, where c and d are cells, has now been associated with two points, one in c and one in d.
Colour the edge joining these two points using colour 1. Doing this for all edges of C clearly
joins up all the edges coloured 1 into one big cycle using all points in the dense cells.

Now do the same with colours 2, . . . , k/2, one after another, but each time being careful
to use edges zi in each cell that are not adjacent to such edges used with any of the previous
colours. This is easily done because using an edge for one colour eliminates at most four edges
of another colour (as the graph induced by edges of a given colour has maximum degree at
most 2). So the process can be carried out if M is greater than 2k∆. All the edges that are
still coloured and were not used for joining into paths Pi we call spare.

Step 2. Extending the cycles into the sparse cells

There are now k/2 edge-disjoint coloured cycles, one of each colour, and each cycle uses
precisely all the points in dense cells. Note that within each dense cell, there are still an
arbitrarily large number (depending on M) of spare edges of each colour, left over from the
original application of Lemma 7. To prepare for extending the cycles into the sparse cells, we
will break the cycles at these spare edges.

Let c be any sparse cell. By the definition of B and our assumption that B has no cells,
there is a dense cell, say c′, adjacent to c in GC . If c contains at most 2k points, for each vertex
v of the geometric graph inside c do the following. Choose a spare edge z inside c′ of colour
1, uncolour the spare edge z, and colour the two edges from the endpoints of z to v with the
colour 1. Any edges of different colours adjacent to z should be deemed not spare after use.
Then repeat for each of the other colours. After this, the edges of any given colour form a
cycle containing all points in dense cells and in c.

On the other hand, if c contains more than 2k points, the above process could potentially
require too many spare edges, so we must do something else. By Lemma 7, we can specify
k/2 edge-disjoint Hamilton cycles around the points in c, one of each of the colours. One
can then greedily choose an independent set of edges, one of each colour. (This is easily seen
by noting that choosing an edge knocks out at most four adjacent edges with any particular
colour. Alternatively, by a more careful argument which we give later, it can be shown that
the same holds as long as c contains more than k points.) These edges can be matched up
with k/2 spare edges that have both endpoints in c′, and then each of the coloured cycles is
easily extended by uncolouring each matched pair of edges and appropriately colouring the
edges joining their endpoints. Again for this case, the edges of any given colour form a cycle
containing all the points in dense cells and in c.

This process can be repeated for each sparse cell. Since each dense cell has at most ∆
neighbours in GC , the total number of spare edges required of any one colour in any dense
cell can be crudely bounded above by 2k∆, which is the same as the upper bound on the
number of points already used up. Thus, for M sufficiently large (4k∆ should do), there will
be a sufficient number of spare edges to finish with a cycle of each colour through all points
in G (X; rl), using only the edges of G (X; rl). This finishes Step 2 and the proof in the case
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that B is empty.
We now turn our attention to the (much more difficult) case that B is nonempty, for which

we use an appropriate modification of the above argument.

Part 2. The general case: B can be nonempty.

For this, we will need to use some edges of G (X; rk) that are not present in G (X; rl), but
the definition of all structures (such as bad components) remains as determined by the graph
G (X; rl). Recall the Eulerian circuit C chosen at the start of the proof. This circuit gives a
directed tour of all dense cells in the graph GC . (Recall that in this section the term dense
is reserved for cells in D0.) We will first extend this tour to a circuit that includes routes
through each bad component, and later perform modified versions of Steps 1 and 2 described
above.

Pick one such bad component b, which must be small by Lemma 5, and let R = R(b) be
a set of cells as in Lemma 6. Recall that 0 < |R| < 10/δ2. To take care of b, we will work
entirely in R and the bad component b. Let J denote the set of points in cells in b and set
j = |J | (assume that j > 0, since otherwise b has no role in our argument). The subgraph of
G (X; rl) induced by J is a copy of Kj , since b is small and can be embedded in a 16× 16 grid
of cells (and assuming that 32δ < 1). Now consider the graph G (X; rk), which by definition
is k-connected, and let J ′ = NG (X;rk)(J) \ J . Let H denote the induced bipartite subgraph
of G (X; rk) with parts J and J ′, and let G ⊆ G (X; rk) be the union of H with the clique on
vertex set J . Note for later reference that the set J ′ can possibly contain vertices in dense
cells: although no cell in b is adjacent to a dense cell, points in it can be adjacent to points in
a dense cell.

A linear forest is a forest all of whose components are paths.

Claim 1. G contains k/2 pairwise edge-disjoint linear forests F1, . . . , Fk/2, such that
(a) in each forest all vertices in J have degree 2, and
(b) the set of vertices in J ′ contained in some path of F1, . . . , Fk/2 has cardinality at most 2k2.

To prove the claim, we consider two cases.

Case 1: j > k.

Since G (X; rk) is k-connected, no vertex cut of G of size less than k can separate J from
J ′. Moreover, both J and J ′ have cardinality at least k. So (a version of) Menger’s theorem
implies that there is a set of k pairwise disjoint paths joining J to J ′. Hence, there is a
matching, T , of cardinality k, with each edge of the matching joining a point in J to a point
in J ′.

Consider first an arbitrary complete graph Kj , of which Lemma 7 can be used to obtain
a full hamiltonian decomposition, together with a transversal containing one edge from each
of the Hamilton cycles. Now choose k/2 of the Hamilton cycles in the decomposition, and let
T ′ be the matching consisting of the edges of the transversal that lie in the chosen cycles.

Next, we can identify the set of vertices of Kj with the set J , such that the vertices incident
with edges in T ′ are identified with the vertices of J that are matched by T . From each of the
Hamilton cycles, delete the edge, say x, in that cycle that lies in T ′, and add the two edges of
T adjacent to x. This gives a path P in G which starts and finishes in vertices in J ′. Since T ′

is a matching, the end vertices of all paths comprise a set of k distinct vertices. Hence, these
k/2 paths suffice for F1, . . . , Fk/2.

Case 2: j ≤ k.
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Set K = 2k+k2 and define J0 to be the set of points in J that have less than K neighbours
in G (X; rk). Also, put J1 = J \ J0 and let J ′0 = NG (X;rk)(J0) \ J0 (note that J ′0 is contained
in the (disjoint) union of J1 and J ′).

We first prove an analogue of the claim but with J0 and J ′0 playing the role of J and
J ′. Let H0 denote the induced bipartite subgraph of G (X; rk) with parts J0 and J ′0, and let
G0 ⊆ G (X; rk) be the union of H0 with the clique on vertex set J0. Put j0 = |J0|. The
degenerate case j0 = 0 will be treated later, so we assume that j0 ≥ 1. Observe that we can
find a set J ′′0 of k points in J ′0 which are common neighbours of all points in J0 with respect
to G (X; rk). This follows from Lemma 3 for j0 ≥ 2, and is trivially true for j0 = 1 since
G (X; rk) is k-connected.

Consider first an arbitrary complete graph Kk+j0 , of which Lemma 7 can be used to obtain
a full hamiltonian decomposition, together with a transversal containing one edge from each
of the Hamilton cycles. Now choose k/2 of the Hamilton cycles in the decomposition, and let
T be the matching consisting of the edges of the transversal that lie in the chosen cycles.

Next, we can identify the set of vertices of Kk+j0 with the set J0 ∪ J ′′0 , so that the vertices
incident with edges in T are identified with the vertices of J ′′0 . Each of the original Hamilton
cycles in the decomposition turns into a linear forest when restricted to the edges in G0, since
at least the edge in the matching T is missing in G0 (J ′′0 ⊆ J ′0 has no internal edges in G0).
By construction, these k/2 forests have the following properties: in each forest all vertices
in J0 have degree 2; and the set of vertices in J ′0 contained in some path of some forest has
cardinality at most k. In addition, this statement is also trivially satisfied in the case j0 = 0
by considering k/2 empty forests (also define J ′′0 = ∅ in this case).

We complete each of these k/2 forests by adding all these vertices of J1 that were not used
by any path in that forest (these new vertices are interpreted as paths of length 0 in the forest,
and they might belong to more than one forest). Observe that after doing that the forests
stay edge-disjoint, and the set of vertices in J1 ∪ J ′0 contained in some path has cardinality at
most 2k.

Some of the paths in the forests have one or two end vertices in J1. We extend these
paths (edge-disjointly with paths in any of the forests) as follows. If v ∈ J1 is an end vertex
of some path, we extend the path in that direction by adding one of the neighbours of v
in G (X; rk) which is not already in any path of any forest (paths of length 0 in J1 are
naturally extended in two directions). This can be done since each vertex v in J1 has at least
K ≥ |J |+ |J ′′0 |+ 2(k/2)|J1| neighbours to choose. Observe that the newly added end vertices
must lie in N(J1)\J ⊆ J ′ since all vertices in J were already used in some path. The resulting
forests F1, . . . , Fk/2 satisfy all the requirements, since all vertices in J have now degree 2 in each
forest, and the set of vertices in J ′ contained in some path is at most |J ′′0 |+ (k/2)2|J1| ≤ 2k2.
This completes the proof of the claim (see also Figure 4 for a visual description of this second
case).

Let J ′′ be the set of vertices in J ′ contained in some path of F1, . . . , Fk/2. By the claim
above, we have |J ′′| ≤ 2k2. We extend each forest Fi to a spanning forest F ′i of J ∪ J ′′ by
adding those vertices in J ′′ not used by any path of Fi (these vertices are counted as separate
paths of length 0). The total number of paths of F ′1, . . . , F

′
k/2 is at most |J ′′|k/2 ≤ k3, taking

into account multiplicity since each 0-length path may belong to more than one forest F ′i .
Moreover, by setting r = rl and r′ = rk in Lemma 6, we deduce that each vertex in J ′′ is
contained in a cell c that is either dense or adjacent to some dense cell in R. (Note that c
may be either sparse or dense.)

The next step is to associate each of the paths in F ′i with the colour i, and create circuits
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Figure 4: Illustration of Case 2 in the proof of Claim 1 for k = 6, j = 5 and j0 = 3, representing
the construction of the linear forests. For the sake of clarity, only a subset of the vertices in
J ′ is shown. (Note that each vertex in J1 should have at least 2k + k2 neighbours in J ∪ J ′.)

C1, . . . Ck/2 such that circuit Ci contains C, together with an extra cycle C(P ) for each path
P in the forest F ′i . To construct C(P ), take two cells c and d in R (possibly c = d), one
for each end-vertex of P , either containing the end-vertex or adjacent to a cell containing it.
Then the cycle C(P ) consists of a special new edge (possibly a loop) joining cells c and d (we
say this edge represents P ), together with a path of cells within R joining those same cells c
and d. Note that each cycle has length bounded above by 10/δ2 (see Lemma 6).

This construction was all with respect to a particular bad component b. Now repeat the
construction for all the other bad components, in each case extending the circuits C1, . . . Ck/2
in the same way as for b. By Lemma 6, two paths P and P ′ related to different bad components
have no vertex in common, and also the corresponding extra cycles C(P ) and C(P ′) use disjoint
sets of dense cells. Hence, the number of these new cycles passing through any particular dense
cell is at most k3, so the maximum degree of dense cells in each Ci is at most 2∆ + 2k3.

We next perform a version of Step 1 described in Part 1. First, let us call all the vertices
lying in forests Fi with respect to bad components the forest vertices.

Step 1’. Turning the circuits Ci into edge-disjoint coloured cycles

The first part of this is done just as for Step 1 when B empty, except for two aspects. To
start with, all forest vertices within dense cells are set aside and not used in the construction
of the coloured cycles within the dense cells. Secondly, where an edge of the circuit between
cells c and c′ is one of those representing a path P in a forest, instead of a simple edge between
vertices u in c and v in c′, the cycle uses the path P represented by that edge, together with
the edges joining P to u and v. In this way, we obtain from Ci a cycle of colour i that
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visits precisely all vertices that are either forest vertices (i.e. in J(b) or J ′′(b) for any small
component b), or in dense cells, but not both. All other points in X will be called outsiders.
They are not yet visited by any of C1, . . . , Ck/2, either because they are neither forest vertices
nor in a dense cell, or are in both.

We next perform a version of Step 2, as follows.

Step 2’. Extending the cycles to the outsiders

This consists of extending each coloured cycle as done in Step 2, but this time extending
to them only through the outsiders. The other significant difference between this and Step 2
is that the maximum degree of dense cells in each Ci is now bounded above by 2∆+2k3 rather
than 2∆, and there are some outsiders in each dense cell, so there are fewer spare edges to
work with, but the change is only a constant. So we need to adjust the lower bound on M
accordingly. This completes the proof of part (i) of the theorem.

(ii) Proof for k odd.

We now consider odd k ≥ 1. Recall that the total number of vertices in the geometric
graph must be even. The same framework of argument is used as for k even. For k odd, colours
1, . . . (k − 1)/2 will be used for the Hamilton cycles, and colour (k + 1)/2 will be used for the
matching. We find it convenient to refer to (k + 1)/2 as the match colour. The edges that
we colour using the match colour will form a spanning subgraph D of the geometric graph,
whose edges form a cycle on some (possibly all) vertices and a matching of some of the other
vertices; in the very last stage of the argument we will adjust this to form a perfect matching
of the whole graph.

Define the multigraph F as for k even, and construct C in the same way. We next need to
perform a version of Step 1. In this case, instead of creating k/2 edge-disjoint cycles passing
through all the points in dense cells, we construct (k+1)/2 of them using the same construction
as for k even.

In the case that there are no bad cells, the argument as in Part 1 above shows that all the
cycles can be extended as in Step 2 to edge-disjoint Hamilton cycles of the graph. Then, since
the graph has an even number of vertices, every second edge of the matching colour can be
omitted to provide the desired colouring.

So consider the case that B is possibly nonempty and follow the argument in Part 2 for k
even, up to the point where Claim 1 is made. This claim is replaced by the following.

Claim 2. G contains (k+ 1)/2 pairwise edge-disjoint linear forests F1, . . . , F(k+1)/2, such that
(a) in each of the first (k − 1)/2 forests all vertices in J have degree 2,
(b) the set of vertices in J ′ contained in some path of F1, . . . , F(k+1)/2 has cardinality at most
2k2, and
(c) the last forest, F(k+1)/2, is a matching that saturates each vertex in J .

To prove this claim, we again distinguish two main cases but insert an extra one.

Case 1a: j > k + 1.

As in the case j > k for the first claim, we may find the matching T of (odd) cardinality
k, and also (k + 1)/2 edge-disjoint Hamilton cycles in G[J ], with a matching T ′ containing
one edge from each Hamilton cycle. By relabelling J , we can then align the end vertices of
the T ′ with those of T in J , but only using one end vertex of the edge in the last cycle. A set
of edges in this last cycle is easily deleted so that what remains, together with the incident
edge of T , is a matching either entirely contained in J or with one edge (of T ) leaving J . This
proves the claim in this case.
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Case 1b: j = k + 1.

In this case, we may use the decomposition of a Kj+1 = Kk+2 into (k + 1)/2 Hamilton
cycles, delete any one vertex, and use the broken Hamilton cycles for the paths, plus every
second edge of any one of them for the matching.

Case 2: j ≤ k.

This is analogous to the proof of Case 2 of Claim 1, so we just sketch the main changes.
Here for j0 ≥ 1 we use the full hamiltonian decomposition of Kk+j0 (see Lemma 7) to select
(k−1)/2 edge-disjoint Hamilton cycles and one matching of all but at most one vertex (which
we call the unmatched vertex) of Kk+j0 . We also obtain a matching T consisting precisely of
one edge of each of the (k − 1)/2 cycles. Then we identify the set of vertices of Kk+j0 with
the set J0 ∪J ′′0 as before, but we must additionally guarantee that the unmatched vertex (if it
exists) is identified with some vertex of J ′′0 . Reasoning as in the proof of Claim 1, we obtain
(k + 1)/2 edge-disjoint forests in G0, where the first (k − 1)/2 of the forests have analogous
properties to those in Claim 1, and the last forest is a matching that saturates each vertex in J0.
To extend the forests to all the vertices of J , we deal with the first (k−1)/2 forests exactly as
before. The matching is extended by connecting each vertex v in J1 that is not in the original
matching to one of the neighbours of v which is not already in any path of any forest. As
before, this can be done since each vertex v in J1 has at least K ≥ |J |+|J ′′0 |+(2(k−1)/2+1)|J1|
neighbours to choose. This finishes the proof of Claim 2.

We now extend the forests to spanning forests F ′i , exactly as for the even k case (this now
includes the match colour). We are now prepared for the analogue of Step 1.

Step 1”. Circuits into cycles and matching

For each non-match colour 1 ≤ i ≤ (k−1)/2, the forests F ′i in the various bad components
are treated the same way as in Step 1’ in order to create circuits Ci. These are then turned
into edge-disjoint cycles C̃i passing through all vertices except for the outsiders, just as for k
even. Simultaneously with this, by including an extra colour in the construction, we create a
cycle in the match colour that passes through just the vertices in the dense cells apart from
outsiders. For this colour, we must do something different with respect to the vertices not
in dense cells. So let i = (k + 1)/2; so far we have a cycle C̃i, through all non-forest points
in dense cells, whose edges are of colour i. The edges of a given forest Fi related to a bad
component are naturally coloured with i. For each single vertex component v in the forest F ′i
(i.e. each vertex v unmatched by Fi), let d be a dense cell either equal or adjacent to the cell
c containing v. We may select the end-vertices v1 and v2 in d of a spare edge of C̃i (note this
implies that the edges vv1 and vv2 are currently uncoloured). Denoting these two vertices v1
and v2, the pair {v1, v2} is called the gate for v. Each such vertex v is treated in this way, its
gate is defined and v is added to a set W (a set of vertices which are ‘waiting’). Naturally,
any spare edge incident with either vertex in a gate is deemed non-spare for all subsequent
choices of gates. Note that at this stage, all vertices in the graph are incident with an edge of
the match colour except for the outsiders and those in W .

Next, we perform the step of extending the cycles to the outsiders.

Step 2”. Extending cycles and matching to outsiders

For each non-match colour i, the cycle of colour i is extended as in Step 2’. We next show
that we can also include a near-perfect matching of the match colour, which saturates all but
a bounded number of outsiders, such that the matching is edge-disjoint from all the coloured
cycles. This extra matching is easily obtained using the methodology of Step 2’: for the match
colour i, if a sparse cell c contains at most 2k outsiders, we may leave all outsiders unmatched.
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If it contains more outsiders, simply include an extra cycle Ĉ through all outsiders in c. This
cycle should be chosen simultaneously with all the other cycles being chosen within cell c in
this Step 2”, using Lemma 7. Then, colour every second edge of Ĉ with the match colour,
leaving at most one outsider in this cell unmatched. Finally, in either case, for each remaining
unmatched outsider v, choose a gate (v1, v2) exactly as described in Step 1”. Note that a
dense cell contains a bounded number of outsiders since these are all in the forest Fi.

After all this, every vertex is in each of the coloured cycles of colour i ≤ (k − 1)/2, but
we still need to create the perfect matching of colour i = (k + 1)/2. So far, all vertices are
either matched by the match colour i, or lie in W , or lie on the cycle C̃i. To fix this, in one
fell swoop, we choose simultaneously for all vertices v in W , a vertex v′, in the gate for v,
such that all the vertices v′ have odd distance apart as measured along the cycle C̃i of colour
i. (Why this is possible will be explained shortly.) Then all such edges of the form vv′ are
coloured i, and finally, every second edge along Ci between these vertices is coloured i in such
a way as to create a matching. The edges of colour i clearly form a perfect matching of the
graph.

The only thing left to explain is why the choice of all v′ as specified, creating odd distances,
is feasible. Since there are two adjacent vertices on the cycle in each gate that can potentially
be used as v′, we may pass along the cycle C̃i making sure that the distances between chosen
vertices are odd, until returning to the starting point. The very last distance must be odd
because the number of gates equals the number of vertices in W . These are precisely the
vertices outside the cycle that are not already matched by colour i. Since the number of
vertices in the graph is even, the parity is correct for every distance to be odd.

4 General dimension

We can be extend our main result to general dimension, in the following sense. Modify the
definition of X = (X1, . . . , Xn) by assuming that the Xi are chosen independently and u.a.r.
from [0, 1]d, for some fixed integer d ≥ 2. Redefine G (X; r) analogously, using some fixed `p
norm of [0, 1]d. Then Theorem 1 still holds for the random graph process

(
G (X; r)

)
0≤r<∞.

In fact, most of the argument in the paper is independent of d, so we shall simply sketch
the main differences of those parts that need to be changed.

First of all, the definition of constant m in Section 2 is extended to

m =

{
2d−2(k + 2− d− 2/d) if 1 ≤ k < d,

2d−1(k + 1− d− 1/d) if k ≥ d

and let θ denote the volume of the unit d-dimensional ball with respect to the `p norm. Then,
Proposition 2 remains valid if we change (1) to

θnrk
d − 2d−1

d
log n−m log logn,

since it still follows from Theorem 8.4 in [7]. In view of that, we replace the condition on r by

θnrd = 2d−1

d log n+m log log n+O(1) in the statement of Lemma 3 and by θnrd ∼ 2d−1

d log n
in Lemmas 4, 5 and 6.

In order to extend the proof of Lemma 3 to general dimension d, we classify bad config-
urations into types according to their position with respect to the boundary of [0, 1]d. More
precisely, for each i ∈ {0, . . . , d}, let Ti denote the number of bad configurations such that Xv1
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is at distance at most r from exactly d− i facets (i.e. (d− 1)-dimensional faces) of [0, 1]d. Set-
ting τi to be the distance between Xv1 and the corresponding facet, we obtain by an analogous
argument that, for some constant c > 0,

ETi = O(1)
∑

j1,j2,j3,j4

nj1+j2+j3+j4
∫ r

0
· · ·
∫ r

0

∫ √dηr
0

ρd(j1−2)+d−1rdj2(ρrd−1)j3+j4

× exp

[
−θnr

d

2d−i
− crd−1n(ρ+ τ1 + · · ·+ τd−i)

]
dρ dτ1 · · · dτd−i

= O(1)
∑

j1,j2,j3,j4

nj1+j2+j3+j4rdj2+(d−1)(j3+j4)

×
∫ r

0
· · ·
∫ r

0

∫ √dηr
0

ρdj1+j3+j4−d−1
e−cr

d−1n(ρ+τ1+···+τd−i)

(n2d−1/d logm n)1/2d−i dρ dτ1 · · · dτd−i

= O(1)
∑

j1,j2,j3,j4

nj1+j2+j3+j4rdj2+(d−1)(j3+j4)

(n2d−1/d logm n)1/2d−i(rd−1n)dj1+j3+j4−i

×
∫ nrd

0
· · ·
∫ nrd

0

∫ √dηnrd
0

xdj1+j3+j4−d−1e−c(x+y1+···+yd−i)dx dy1 · · · dyd−i

= O(1)
∑

j1,j2,j3,j4

(nrd)j1+j2−dj1+ir−i

n2i−1/d logm/2
d−i

n

×
∫ nrd

0
· · ·
∫ nrd

0

∫ √dηnrd
0

xdj1+j3+j4−d−1e−c(x+y1+···+yd−i)dx dy1 · · · dyd−i

= O(1)
∑

j1,j2,j3,j4

(log n)j1+j2−dj1+i−i/d−m/2
d−i

n(2i−1−i)/d ,

where we used the change of variables {x = rd−1nρ, y1 = rd−1nτ1, . . . , y1 = rd−1nτ1} and

the fact that θnrd = 2d−1

d log n + m log logn + O(1). This last expression is trivially o(1) for
all i /∈ {1, 2}, since then we have (2i−1− i)/d > 0. To check the cases i = 1 and i = 2, observe
that an equivalent definition of m is

m = max{2d−2(k + 2− d− 2/d), 2d−1(k + 1− d− 1/d)}.

Hence (using also that j1 + j2 ≤ k + 1 and j1 ≥ 2),

ET1 = O
(

(log n)k+1−2d+1−1/d−m/2d−1
)

= O(log1−d n) = o(1) and

ET2 = O
(

(log n)k+1−2d+2−2/d−m/2d−2
)

= O(log1−d n) = o(1).

The cells defined in Section 2 become d-dimensional hypercubes of side δ′r, and all the
remaining definitions in that section are extended analogously. The a.a.s. events in Lemma 4
simply turn into: for each i ∈ {0, . . . , d}, all connected sets of cells of area at least (1 +
α)iθrd/2d−1 touching exactly d − i facets of [0, 1]d contain some dense cell. The proof is
completely analogous, setting s = d(1 + α)iθ/(2d−1δ′d)e = Θ(1), changing (2) into

(M−1)s∑
t=0

(
n

t

)
(sδ′drd)t(1− sδ′drd)n−t = O

(
e−(1+α)iθr

dn/2d−1
) (M−1)s∑

t=0

(rdn)t

= O
(
n−(1+α)i/d+o(1) log(M−1)s n

)
,
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and observing that there are Θ(1/ri) = Θ((n/ log n)i/d) connected sets of s cells touching d− i
facets of [0, 1]d.

Redefine small sets of cells to be those ones that can be embedded in a (4d2)×
d
^· · · × (4d2)

grid of cells (i.e. a set of cells of `∞-diameter at most 4d2δ′r). Call those sets of cells that are
not small large. In these terms, we proceed to extend Lemma 5 to general dimension d ≥ 2.
From results in either [1] or [4], we deduce that a.a.s. GC [D] has one very large component D0

and all (bad) components of GC [B] have geometric diameter at most r/10 (see more specifically
Lemma 5, Corollary 10 and Section 3 in [1], and also Proposition 5 and Section 3 in [4]). So
in particular a.a.s. there is no bad component b such that N(b) touches any pair of opposite
facets of [0, 1]d. In order to show that a.a.s. all bad components are small it is sufficient to
prove the following claim:

• A.a.s. for any large connected set of cells S such that N(S) does not touch any two
opposite facets of [0, 1]d, N(S) \ S must contain some dense cell.

The proof of this claim is very similar to the one of the claim in the beginning of the proof of
Lemma 5, and simply consists in bounding from below the area of some connected component
of N(S)\S by describing some disjoint suitable subsets contained in one topological component
of ∪(N(S) \ S). We thus sketch only the main ideas, and describe the subsets of ∪(N(S) \ S)
with the required properties.

For any i ∈ {0, . . . , d}, assume that N(S) touches exactly d − i facets of [0, 1]d, namely
F1, . . . , Fd−i, where w.l.o.g. Ft = [0, 1]t−1 × {0} × [0, 1]d−t. For i = 0, the claim above is
immediate from the extended version of Lemma 4, so we focus on the case i > 0.

First we need some geometric definitions that extend some of the objects we already used
for d = 2. We call d-ball sector of centre O ∈ Rd to the intersection of the d-ball of centre
O and radius (1 − 2dδ′)r with one of the 2d orthants that arise after translating the origin
of coordinates to O. A d-ball sector has volume θ(1− 2dδ′)drd/2d. Given a cell in [0, 1]d, we
associate to each of its 2d corners the d-ball sector centred on the corner and in the orthant
opposite to the cell. To simplify notation, let us denote the (d − 1)th and dth coordinates
in [0, 1]d (or Rd) as ‘horizontal’ and ‘vertical’ respectively, so that the usual two dimensional
language can be applied when referring to these coordinates. A vertical cylinder sector in Rd
is the cartesian product of a (d−1)-ball sector times [a, b], and we say that this cylinder sector
has height b− a ≥ 0. Similarly, we can obtain a horizontal cylinder sector of length b− a by
permuting the last two coordinates. A vertical (horizontal) cylinder sector of height (length)
b− a has volume at least (b− a)θ(1− 2dδ′)d−1rd−1/2d.

Now let c1 and c2 be respectively a topmost and a bottommost cell in S (possibly equal or
not unique). We can find 2i−1 disjoint d-ball sectors above c1 (associated to the top corners
of c1 which point towards the interior of [0, 1]d) which are contained in the same topological
component of ∪(N(S) \ S). Similarly, we can find 2i−1 disjoint d-ball sectors below c2 in the
same component. Hence, some topological component of ∪(N(S) \ S) has area at least

2i−dθ(1− 2dδ′)drd.

Therefore, if 3 ≤ i ≤ d then 2i−d > i/2d−1 and the claim follows by Lemma 4. Notice that so
far we did not use the fact that S is large.

For the cases i = 1, 2, we need to achieve a better bound by finding some additional and
disjoint subsets of ∪(N(S) \ S) with the required properties. Since S is large, we can assume
w.l.o.g. that the vertical length of S is at least 4d2δ′r. Consider first the case i = 2. Let c3
and c4 be respectively a leftmost and a rightmost cell in S (possibly equal or not unique). In
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addition to the previously described d-ball sectors, we consider a vertical cylinder sector of
height 4d2δ′r to the right of c4 and between the top and the bottom d-ball sectors. Similarly,
consider a vertical cylinder sector of height 4d2δ′r to the left of c3, a horizontal cylinder sector
of length δ′r above c1 and a horizontal cylinder sector of length δ′r below c2. The total area
is in this case at least

4θ(1− 2dδ′)drd/2d + 2(4d2 + 1)δ′rθ(1− 2dδ′)d−1rd−1/2d =

2θrd/2d−1
[
(1− 2dδ′)d + (4d2 + 1)δ′(1− 2dδ′)d−1/2

]
,

and the claim follows by Lemma 4 since (1 − 2dδ′)d + (4d2 + 1)δ′(1 − 2dδ′)d−1/2 > 1 for δ
small enough.

Finally, suppose i = 1. This case is similar to the previous one. We consider the initial 2i

d-ball sectors as before plus an additional vertical cylinder sector of height 4d2δ′r to the right
of c4, a horizontal cylinder sector of length δ′r above c1 and a horizontal cylinder sector of
length δ′r below c2. The total area is at least

2θ(1− 2dδ′)drd/2d + (4d2 + 2)δ′rθ(1− 2dδ′)d−1rd−1/2d =

2θrd/2d−1
[
(1− 2dδ′)d + (4d2 + 2)δ′(1− 2dδ′)d−1/2

]
,

and the claim follows by Lemma 4.
Lemma 6 can be extended effortlessly changing 16 to 4d2 and other constants appropriately.

The remaining parts of the argument either are independent of d or require trivial extensions
to the case of arbitrary d ≥ 3.
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