Flows, dynamics and algorithms for 3–manifold groups

Tim Susse

University of Nebraska

4 March 2017
Groups and the word problem

Let $G = \langle A \mid R \rangle$ be a finitely presented group. The **word problem (WP)** for G asks if there is an algorithm that determines whether a word $w \in A^*$ represents the identity in G.

Theorem (Boone & Novikov)

Not every fin. pres. group has a decidable WP.

Classes of f.p. groups with solvable WP

- Abelian groups
- Hyperbolic groups (via Dehn’s algorithm)
- Nilpotent and polycyclic groups (closure under extension)
- Fundamental groups of 3-manifolds (via geometrization)

Goal: *Common* algorithm for 3-manifold groups, solving the WP using finite state automata (bounding computational complexity)
Trees and flow functions

Take $G = \langle A \mid R \rangle$ a finitely presented group, and $\Gamma = \Gamma(G, A)$ its Cayley graph.

Ideas on effectively solving the WP

1. Find a spanning tree T for Γ
2. Find a way to rewrite edges outside of T to paths “closer to T”
3. Make sure that everything is computable (by FSA)

Example.

$BS(1, 2) = \langle a, t \mid tat^{-1} = a^2 \rangle$

$T :$ Down-horizontal-up
More Formally

Definition
A function Φ which takes edges in Γ to paths in Γ is called a *bounded flow function* for (G, T) if there exists a constant $K > 0$ so that:

1. for $e \in T$, $\Phi(e) = e$
2. for every edge e, $\Phi(e)$ has length at most K
3. $\Phi(e)$ starts and ends at the same vertices as e
4. there is no infinite sequence $\{e_i\}$ so that $e_i \neq e_{i+1}$ and e_{i+1} is an edge on $\Phi(e_i)$

A group with a bounded flow function is called *stackable*. If Φ can be computed by an FSA, then G is called *autostackable*.

Notes
▶ Autostackable groups have WP solvable using only an FSA
▶ Autostackability is equivalent to the existence of a regular, bounded, prefix-sensitive rewriting system
More Formally

A group with a bounded flow function is called *stackable*. If Φ can be computed by an FSA, then G is called *autostackable*.

Notes

- Autostackable groups have WP solvable using only an FSA
- Autostackability is equivalent to the existence of a regular, bounded, prefix-sensitive rewriting system
Example: \mathbb{Z}^2
Example: \mathbb{Z}^2
Example: \mathbb{Z}^2
Other WP solutions by FSA’s

Thm. (Brittenham–Hermiller–Holt, 2014)

(Asynchronously) Automatic groups on prefix-closed (unique) normal forms are autostackable.

Thm. (BHH, 2014)

If G has a finite convergent rewriting system, then G is autostackable.
A consequence of the Geometrization Theorem (Perelman) for 3-manifolds:

Cor.

If M is a compact 3-manifold with incompressible toral boundary, then $\pi_1(M)$ has solvable word problem.
3-manifold groups: Earlier word problem solutions

Types of Solutions

<table>
<thead>
<tr>
<th>Types of Solutions</th>
<th>Rewriting Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automaticity & Comblings</td>
<td>Hermiller–Shapiro 1999:</td>
</tr>
<tr>
<td>ECHLPT 1992; Thurston 1992; N. Brady 2001: M with no Nil or Sol pieces is automatic, otherwise not</td>
<td>M geometric and not hyperbolic has a finite complete rewriting system</td>
</tr>
<tr>
<td>Bridson–Gilman 1996: All closed M have an asynchronous combing by an indexed language</td>
<td>Open Question: Does every closed M admit an FCRS?</td>
</tr>
</tbody>
</table>

Cor. (Brittenham–Hermiller–Holt 2014)

If M is a closed geometric 3-manifold, then $\pi_1(M)$ is autostackable.
Main Theorem

Thm. (Brittenham–Hermiller–S. 2016)
If M is a compact 3-manifold with incompressible toral boundary, then $\pi_1(M)$ is autostackable.

Rmk. This gives a common solution to the word problem using FSA’s.
Strategy

1. Break down M and $\pi_1(M)$ into pieces that are “manageable.”
2. Prove that each of the pieces is autostackable.
3. Prove a combination theorem to glue the autostackable structures back together.

Note.
Every time we do an operation to simplify M, we need a theorem to tell us that autostackability of $\pi_1(simplified manifold)$ implies autostackability of $\pi_1(M)$.
Decomposing M: Part I

Orientation:

Topology: Replace M by its orientable double cover \tilde{M}.

Group Theory: $\pi_1(\tilde{M}) < \pi_1(M)$ of index 2.

Prime decomposition:

Topology: Cut orientable M along a maximal system of S^2’s; glue D^3 into boundary of each piece to decompose M as $M = M_1 \# M_2 \# \cdots \# M_k$, there M_i is prime.

Group Theory: $\pi_1(M) = \pi_1(M_1) \ast \pi_1(M_2) \ast \cdots \pi_1(M_k)$.

Thm. (BHJ 2016) Autostackable groups are closed under free/direct/graph products.
Decomposing M: Part I

Orientation:
Topology: Replace M by its orientable double cover \tilde{M}.
Group Theory: $\pi_1(\tilde{M}) < \pi_1(M)$ of index 2.

Thm. (Brittenham, Hermiller, Johnson 2016)
Autostackable groups are closed under finite index supergroups.

Prime decomposition:
Topology: Cut orientable M along a maximal system of S^2's; glue D^3 into boundary of each piece to decompose M as $M = M_1 \# M_2 \# \cdots \# M_k$, there M_i is prime.
Group Theory: $\pi_1(M) = \pi_1(M_1) \ast \pi_1(M_2) \ast \cdots \pi_1(M_k)$.

Thm. (BHJ 2016)
Autostackable groups are closed under free/direct/graph products.
Decomposing M: Part II

Topology: Cut M_i along a maximal system of embedded, incompressible tori, to obtain 3-manifolds $M_{i,j}$ with incompressible torus boundary.

Group Theory: Use Seifert-vanKampen, $\pi_1(M_i)$ decomposes as the fundamental group of a graph of groups. vertex groups: $\pi_1(M_{i,j})$, edge groups: \mathbb{Z}^2
Decomposing M: Part II

JSJ decomposition:

Topology: Cut M_i along a maximal system of embedded, incompressible tori, to obtain 3-manifolds $M_{i,j}$ with incompressible torus boundary.

Group Theory: Use Seifert-vanKampen, $\pi_1(M_i)$ decomposes as the fundamental group of a graph of groups.

- **vertex groups:** $\pi_1(M_{i,j})$
- **edge groups:** \mathbb{Z}^2

Geometrization:

Topology: A prime 3-manifold M_i is either:

- Geometric: that is admits, a complete metric based one of Thurston’s 8 geometries;
- Non-geometric: admits a non-trivial JSJ decomposition with each $M_{i,j}$ either: ● Seifert fibered or ● hyperbolic

Thm (BHH, 2014): If M^3 is closed and geometric, then $\pi_1(M^3)$ is autostackable
The class of autostackable groups is NOT closed under taking graphs of groups!

Example (Mihalova; Hermiller–Martinez-Perez):
There is a group obtained by taking an HNN-extension of $F_2 \times F_2$ which has unsolvable word problem. It is stackable but cannot be algorithmically stackable.

We need a stronger condition on $\pi_1(M_{i,j})$. **They must be autostackable respecting the peripheral subgroups.**
Closure for fundamental groups of graphs of groups

Defn. G is **autostackable respecting** a subgroup H if there are finite generating sets $G = \langle A \rangle$, and A contains generators, B, for H, such that G is autostackable over A with a spanning tree T satisfying:

- **Subgroup closure:** T contains a spanning tree T' for H over B, and for all edges $e \in \Gamma(H, B)$, $\Phi(e) \subseteq \Gamma(H, B)$.
- **H–translation invariance:** $T \setminus T'$ is an H–orbit of a transversal tree for H in G.
- for all $h \in H$, and edges $e \not\in \Gamma(H, B)$, $\Phi(h \cdot e) = h \cdot \Phi(e)$.

Closure for fundamental groups of graphs of groups
Closure for fundamental groups of graphs of groups

\[H \rightarrow T' \rightarrow T'' \]
Closure for fundamental groups of graphs of groups
Closure for fundamental groups of graphs of groups
Thm. (BHS, 2016)
Let \(\Lambda \) be a finite connected graph with vertex groups \(G_v \) and edge groups \(G_e \) such that for each endpoint \(v \) of an edge \(e \), \(G_v \) is autostackable respecting \(G_e \). The fundamental group of this graph of groups is autostackable.
Hyperbolic pieces

Thm. (BHS 2016) If G is finitely generated and hyperbolic relative to a collection \mathcal{H} of abelian subgroups, then for all $H \in \mathcal{H}$, the group G is autostackable respecting H.

Ingredients:

Thm. (BHS, 2016) Let G be a finitely generated group, and H a finitely generated autostackable subgroup. Suppose that the pair (G, H) is strongly coset automatic, then G is autostackable respecting H.

\[u, v \in \text{transversal language}, \, ux = hv, \, h \in H. \]
Seifert fibered pieces

Thm. (BHS, 2016) If M is a Seifert-fibered 3-manifold with incompressible torus boundary, then for each T^2 boundary component, $\pi_1(M)$ is autostackable respecting $\pi_1(T^2)$.

Ingredients:

Topology: M is a circle bundle over a 2–dimensional orbifold.
Seifert fibered pieces

Thm. (BHS, 2016) If M is a Seifert-fibered 3-manifold with incompressible torus boundary, then for each T^2 boundary component, $\pi_1(M)$ is autostackable respecting $\pi_1(T^2)$.

Ingredients:

Group Theory: (Seifert 1933) Let M be a Seifert fibered 3–manifold and let X be the base orbifold of the fibration. Then, there is a short exact sequence

$$1 \rightarrow \mathbb{Z} \rightarrow \pi_1(M) \rightarrow \pi^o_1(X) \rightarrow 1$$

where $\pi^o_1(X)$ is the orbifold fundamental group of X.
Seifert fibered pieces

Thm. (BHS, 2016) If M is a Seifert-fibered 3-manifold with incompressible torus boundary, then for each T^2 boundary component, $\pi_1(M)$ is autostackable respecting $\pi_1(T^2)$.

Ingredients:

\[1 \rightarrow \mathbb{Z} \rightarrow \pi_1(M) \rightarrow \pi_1^0(X) \rightarrow 1 \]

Topology: Cases: X hyperbolic or Euclidean

Group Theory: Cases: $\pi_1^0(X)$ is either Gromov hyperbolic or virtually \mathbb{Z}.

Thm. (BHS, 2016) Autostackability respecting subgroups behaves nicely under extensions.
Open questions

• Are the normal forms for the autostackable structures on closed 3-manifolds quasi-geodesics?
 Partial Answer: True for each piece of the JSJ decomposition

• What bounds can be found for the time/space complexity of the word problem solution from the autostackable structures for closed 3-manifolds?

• Find a procedure that upon input of a finite presentation of a closed 3-manifold group and a well-founded ordering, can output the associated autostackable structure (if one exists for the given presentation/ordering).

• Is there a finitely presented group that is not stackable?
 (Conj. (Tschantz): Yes; a group that is not tame combable.)
Thank You

Thank You!