Errata

This is the new errata sheet for both hardbound and softcover editions of the text, as of 10/26/16. Errata that apply only to the hardbound edition are followed by “(H)” and those that apply to both are followed by “(H/S)”.

Chapter 1:

(1) p. 8, Exercise 8: Change “Example 1.5” to “Example 1.3”. (H/S)
(2) p. 10, Definition 1.3 of \(A \cap B \): Change “or” to “and”. (H/S)
(3) p. 12, Figure 1.4: Should have \(a + bi = re^{i\theta} \) and \(a - bi = e^{-i\theta} \). (H/S)
(4) p. 13, line -6: Replace “last” by “fifth”. (H/S)
(5) p. 14, line 2: Replace “\(i(x_1y_2 - x_2y_1) \)” by “\(i(x_1y_2 + x_2y_1) \)”. (H/S)
(6) p. 18, Example 1.14: In the solution replace \(-1 \pm \frac{i\sqrt{2}}{2} \) by \(-\frac{1}{2} \pm \frac{i\sqrt{3}}{2} \). (H/S)

Chapter 2:

(1) p. 68, line 10: Delete “\(A = I \)” from “\(A = I \ldots \)”. (H/S)
(2) p. 68, Exercise 2.2.3(c): Answer should be \[
\begin{bmatrix}
1 & -3 \\
0 & 2 \\
-1 & 3
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
= \begin{bmatrix}
-1 \\
0 \\
0
\end{bmatrix}.
\]
(3) p. 69, Exercise 2.2.7(c): Answer should be \[
\begin{bmatrix}
1 & 0 & 1 \\
1 & -3 & 3 \\
0 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
= \begin{bmatrix}
-x_1 \\
nx_2 \\
-x_3
\end{bmatrix}, \quad \text{(H/S)}
\]
(4) p. 69, Exercise 2.2.11: Answers should be \(A^2 = \begin{bmatrix}
-1 & -8 \\
4 & 7
\end{bmatrix} \), \(BA = \begin{bmatrix}
6 & 8 \\
-9 & 16
\end{bmatrix} \), \(AC = \begin{bmatrix}
-9 & -1 \\
-2 & 9
\end{bmatrix} \). (H/S)
(5) p. 70, Exercise 2.2.18: Replace \(uv + wu \) by \(uv + wu^T \). (H/S)
(6) p. 71, Exercises: Missing Problem 28: “Determine the flop count for multiplication of \(m \times p \) matrix \(A \) by \(p \times n \) matrix \(B \). (See page 48.)” (H)
Chapter 4:

(7) p. 74, line 7: Replace “A = \[
\begin{bmatrix}
\frac{\partial}{\partial x} & 0 \\
0 & f_{\text{frac}, 12}
\end{bmatrix}
\]” by “A = \[
\begin{bmatrix}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y}
\end{bmatrix}
\].” (H/S)

(8) p. 75, Figure 2.2(a), Replace “direction by 1.” to “direction by \(\frac{1}{\sqrt{2}} \).”

(9) p. 112, Exercise 2.5.5(c): Answer should be \(E_2 \left(\frac{1}{\sqrt{2}} \right) E_1 \left(-1 \right) E_{21} \) (i). (H/S)

(10) p. 113, Exercise 2.5.23: Replace “if \(A \) and \(B \) are invertible matrices” by “if \(A \) and \(B \) are matrices.” (H/S)

(11) p. 114, Exercise 2.5.27: Replace “Exercise 26” by “Exercise 17”. (H/S)

(12) p. 117, line 13: Replace “\(A_{ij} = (-1)^{i+j} M(A) \)” by “\(A_{ij} = (-1)^{i+j} M_{ij}(A) \)”.

(13) p. 125, line 9: Switch the variables \(x_1 \) and \(x_2 \) in the solution. (H/S)

(14) p. 137, line 2: Replace second row \(-8, -2\) of \(B \otimes A \) by \(-8, 4\). (H/S)

(15) p. 138, line 1: Replace “\(IAX + (-I)XB \)” by “\(AXI + (-I)XB \)”.

(16) p. 143, Exercise 2.7.6: Vectors should be listed as “\(\mathbf{x}^{(0)} \), \(\mathbf{x}^{(1)} \), and \(\mathbf{x}^{(2)} \).”

Chapter 3:

(1) p. 150, line 3: Change “\(n((1 - 2i)) \)” to “\(n(1 - 2i) \)”.

(2) p. 158, line 20: Change “\(T(f(x)) \)” to “\(T(f(x)) \)”.

(3) p. 180, Exercise 3.3.4: Change “\(\mathbb{R}^3 \)” to “\(\mathbb{R}^3 \)”.

(4) p. 182, Exercise 3.3.17: Answer should be \(\begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix} \). (H/S)

(5) p. 182, Exercise 3.3.18: Replace \(\pi/4 \) by \(\pi/6 \). (H/S)

(6) p. 198, Exercise 3.5.22: Statement should be “Show that a set of vectors \(v_1, v_2, \ldots, v_n \) in the vector space \(V \) is a basis if and only if it has no redundant vectors and \(\dim V \leq n \).” (H/S)

Chapter 4:

(1) p. 219, line 1: Change “\(= -6 - 3 + 3 = -6 + 3 + 9 = \)” to “\(= -6 - 3 + 9 = \)”.

(2) p. 219, line 11: Change “\((u \cdot v) w - (u \cdot w) v - (u \cdot v) w \)” to “\((u \cdot w) v - (u \cdot v) w \)”.

(3) p. 219, Exercise 4.1.3(a): Answer should be \(\frac{\sqrt{15}}{2} \).

(4) p. 221, lines 19 and 22: Change “\(\|u\| \)” and “\(\|v\| \)” to “\(\|u\|^2 \)” and “\(\|v\|^2 \)”.

(5) p. 226, line 8: Change “\(\dim \mathbf{a}^\perp = n \)” to “\(\dim \mathbf{a}^\perp = n - 1 \)”.

(6) p. 227, line 9: Sentence should be “It can be shown that if \(A \) is known, the errors in \(b \) are normally distributed, and the least squares solution unique, then it is an unbiased estimator of the true solution in the statistical sense.”

(7) p. 230, line 9: Change “\(\begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} \)” to “\(\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \).

(8) p. 231, Exercise 4.2.3(b): Vectors should be \((3, 0, 4) \), \((2, 2, 1) \). (H/S)

(9) p. 231, Exercise 4.2.5: Answers should be (a) \(|u \cdot v| = 1 \leq \|u\| \|v\| = \sqrt{15} \)
(b) \(|u \cdot v| = 19 \leq \|u\| \|v\| = 2\sqrt{15} \)
(c) \(|u \cdot v| = 26 \leq \|u\| \|v\| = 26 \).

(10) p. 231, Exercise 4.2.7(b): Replace \((1, 1, 1) \) by \((0, 1, 1) \). (H/S)

(11) p. 239, Figure 4.4: Vector marked “\(H_\mathbf{w} \)” should be “\(H_\mathbf{w} \)”.

(12) p. 241, Exercise 4.3.9(c): Answer should be \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \). (H/S)
Chapter 5:

(13) p. 244, Theorem 4.11: The correct statement should be “If \(U_B \overset{S}{\rightarrow} V_C \) \(\rightarrow \) \(\rightarrow \) \(W_D \), then \([T \circ S]_{B,D} = [T]_{C,D}[S]_{B,C} \).” Accordingly, the subscripts should be changed in the proof, i.e., second line of proof should have “\([T \circ S]_{B,D} [u]_B = [(T \circ S)(u)]_B = [T(v)]_D \), fourth line should have “\([T \circ S]_{B,D} [u]_B = [(T \circ S)(u)]_D = [T(S(u))]_D \), sixth line should have “\([S]_{B,C} [u]_B \), seventh line should have “\([T \circ S]_{B,D} [u]_B = [T]_{C,D} [S]_{B,C} [u]_B \), and eighth should have “\(e_j = [u]_B \).” (H/S)

(1) p. 256, line 6: Replace “its” by “it’s”. (H/S)
(2) p. 258, line 7: Replace \(\mathcal{E}_{1+i}(A) \) by \(\mathcal{E}_{1-i}(A) \). (H/S)
(3) p. 262, Problem 5.1.15: Replace “ane” by “and”. (H/S)
(4) p. 265, line -8: Delete \(Ax = \) at start of displayed equation. (H/S)
(5) p. 267, line -5: “\(\sin (\pi A) = \)” should be “\(\sin (\frac{\pi}{A}) = \)” . (H/S)
(6) p. 270, Exercise 5.2.5: Replace “if \(p(A) = 0 \)” by “if \(q(A) = 0 \)” . (H/S)
(7) p. 270, Exercise 5.2.5: Answer should be “True in every case. (a) and (c) satisfy \(q(A) = 0 \) and are diagonalizable, (b) and (d) are not diagonalizable and \(q(A) \neq 0 \).” (H/S)
(8) p. 275, line 12: Replace “10A” by “A”. (H/S)
(9) p. 280, Exercise 5.3.1(d): Answer should be “no dominant eigenvalue”. (H/S)
(10) p. 280, Exercise 5.3.5(d): Answer should be that ergodic theorem does not apply to it. (H)
(11) p. 280, Exercise 5.3.7: Answer should be “\(\text{diag} \{ A, B \} \), where possibilities for \(A \) are \(\{ J_1(2), J_1(1) \} \), \(J_2(2) \) and possibilities for \(B \) are \(\{ J_1(3), J_1(3), J_1(3) \}, \text{diag} \{ J_1(3), J_2(3) \}, \text{diag} \{ J_3(3) \} \} \).” (H/S)
(12) p. 281, Exercise 5.3.11: “three state” should be “three stage”. (H)
(13) p. 281, Exercise 5.3.12: The last sentence should read: “Compare the growth rate to a constant interest rate that closely matches the model.” (H)
(14) p. 282, Problem 5.3.16: “choice of \(a, b \in \mathbb{R} \)” should be “choice of \(a, b \in \mathbb{R} \) with \(b \neq 0 \).” (H/S)
(15) p. 282, Problem 5.3.17: Promote Problem 17 and following up one number. Problem 17 is “Show that 1 is an eigenvalue for all stochastic matrices.” (H)
(16) p. 284, line -9,-10: Replace “\(\mathbf{v}_2^* \)” by “\(\mathbf{v}_2^* \)”. (H/S)
(17) p. 286, Exercise 5.4.2(c): Blank (3,3)th entry of matrix should be 0. (H/S)
(18) p. 287, Exercise 5.4.9: Replace “\(B = \text{P diag} \{ 1, \sqrt{2}, 4 \} \text{P}^T \)” by “\(B = \text{P diag} \{ 1, \sqrt{2}, 2 \} \text{P}^T \)”. (H/S)
(19) p. 288, proof of Theorem 5.14: Delete the repetition of the line beginning “Compute an eigenvalue ...”. Also, since “Exercise 5” did not appear in the final edition, prove that \(H_x \mathbf{w} = \mathbf{e}_1 \) with \(\mathbf{v} = \mathbf{w} - \mathbf{e}_1 \), as follows: Check that \(\mathbf{v}^* (\mathbf{w} + \mathbf{e}_1) = 0 \), since \(\mathbf{w} \cdot \mathbf{e}_1 = \mathbf{e}_1 \cdot \mathbf{w} \), since both dot products are real. Hence \(H_x (\mathbf{w} + \mathbf{e}_1) = \mathbf{w} + \mathbf{e}_1 \). Then use the facts that \(H_x \mathbf{v} = -\mathbf{v} \) and \(\mathbf{w} = \frac{1}{2} (\mathbf{v} + (\mathbf{w} + \mathbf{e}_1)) \) to deduce that \(H_x \mathbf{w} = \mathbf{e}_1 \). (H/S)
(20) p. 292, line 9: replace “right singular values” by “right singular vectors”. (H/S)
Chapter 6:

(1) p. 310, line 11: Replace “\[\frac{1}{n} \int_{e^{-n}} \]” by “\[\frac{1}{n} e^{-n} \]”. (H/S)

(2) p. 311, Exercise 6.1.3(a): Answer for infinity norm should be \(\frac{1}{3}(1, -3, -1) \). (H/S)

(3) p. 314, line 7: Replace “\(\int_{0}^{b} f(x)^2 \, dx \)” by “\(\int_{a}^{b} f(x)^2 \, dx \)”. (H/S)

(4) p. 318, line -11: Replace “\(u(x)^{1/2} \)” with “\(u(x)^{1/2} \)”. (H/S)

(5) p. 320, line 3: Replace “Another useful corollary” by “Another useful corollary to Theorem 6.3”. (H/S)

(6) p. 320, Exercise 6.2.1: Answer for (a) should have \(\|u, v\| = 46, \|u\| \approx \sqrt{97}, \|v\| = \sqrt{40} \) and (b) should have \(\|v\| = \frac{1}{\sqrt{v}} \) and \(\frac{1}{s} = 0.2 \leq \frac{1}{\sqrt{v}} \). (H/S)

(7) p. 320, Exercise 6.2.3(b): Answers should be \(\frac{2}{5}x^3, \frac{2}{5^2}x^2 \). (H/S)

(8) p. 331, Exercise 6.3.5(a): Answer for \(\|v\| \) should be \(\frac{1}{5}(23, -5, 14) \). (H)

(9) p. 331, Exercise 6.3.9: Replace \(w_1 = (-1, -1, 1) \) by “\(w_1 = (-1, 1, -1) \)” (H)

(10) p. 341, Exercise 6.4.8: Change “page 335” to “page 336”. (H/S)

(11) p. 343, Theorem 6.15: Swap “\(\|A\|_1 \)” of (1) with “\(\|A\|_\infty \)” of (2). (H/S)

(12) p. 345, line -10: Replace “\(A^{-1}(I + \bar{A}^{-1}\delta A)\delta x \)” by “\(A^{-1}(I + A\delta A)\delta x \)”.

(13) p. 347, Exercise 6.5.1(c): Answer should be \(2\sqrt{17}, 10, 10 \). (H/S)

(14) p. 347, Exercise 3: Change “\(\delta b = 0.05b \)” to “\(\delta b = 0.5b \)” (H/S)

(15) p. 347, Exercise 6.5.3: Answer should be “Calculate \(c = \|A^{-1}\delta A\| = 0.05, \|I_3\| = 0.05 < 1, \|\delta A\|_A = 0.05, \|\delta b\|_b = 0.5, \text{cond}(A) \approx 6.7807 \). Hence, \(\frac{\|\delta x\|_x}{\|\delta x\|_x} \approx 0.42857 < \frac{\text{cond}(A)}{1-c} \frac{\|\delta A\|_A}{\|\delta b\|_b} \approx 1.7844 \).” (H/S)

(16) p. 347, Problem 6.5.7: Statement should be “\(\|A\|_1 = \max_{1 \leq j \leq m} \{\sum_{i=1}^{n} |a_{ij}|\} \)” (H/S)

(17) p. 354, Exercise 6.6.1: Answer for \(\text{cond}(A) \|\delta b\|_\infty / \|b\|_\infty \) should be 2.5873. (H/S)