Applied Mathematics and Modeling (AMM)
Applications of mathematics to the applied sciences

Department of Mathematics
University of Nebraska-Lincoln

4th March 2006
Outline

1. Introductions
 - Faculty
 - Students

2. What We Do
 - Teaching
 - Research
Faculty

- **Steve Cohn** – partial differential equations, Schrodinger equations, engineering applications (Courant Institute)
- **Steve Dunbar** – differential equations, financial mathematics, biology, stochastic analysis (Minnesota)
- **Glenn Ledder** – asymptotic analysis and perturbations, ecology, hydrogeology (Rensselaer Polytechnic Institute)
- **David Logan** – differential equations, mathematical ecology, effects of global climate change on ecosystems and eco-physiology (Ohio State)
- **Irakli Loladze** – differential equations, environmental stoichiometry (Arizona State)
- **Tom Shores** – numerical analysis, inverse theory, scientific computation (Kansas)
- **Brigitte TenHumberg** – invasion ecology, optimal decision in insect behavior and life history (Göttingen); joint appointment with Mathematics and School of Biological Sciences
Eclectic Faculty

- **Bo Deng** – dynamical systems, chaos, neuroscience, ecology (Michigan State)
- **Wendy Hines** – dynamical systems, gene propagation models (Georgia Institute of Technology)
- **Richard Rebarber** – distributed parameter control theory and population ecology (Wisconsin)
Students

Undergraduate:

We involve numerous undergraduate students in our research programs via programs such as:

- Summer REUs
- UNL UCARE program
- Undergraduate honors theses
- The RUTE project directed by Glenn Ledder
We involve numerous undergraduate students in our research programs via programs such as:

- Summer REUs
- UNL UCARE program
- Undergraduate honors theses
- The RUTE project directed by Glenn Ledder
Undergraduate:

We involve numerous undergraduate students in our research programs via programs such as:

- Summer REUs
- UNL UCARE program
- Undergraduate honors theses
- The RUTE project directed by Glenn Ledder
Students

Undergraduate:

We involve numerous undergraduate students in our research programs via programs such as:

- Summer REUs
- UNL UCARE program
- Undergraduate honors theses
- The RUTE project directed by Glenn Ledder
Undergraduate:
We involve numerous undergraduate students in our research programs via programs such as:
- Summer REUs
- UNL UCARE program
- Undergraduate honors theses
- The RUTE project directed by Glenn Ledder
Graduate Students:
- Amy Frederick (David Logan)
- Joan Lubben (Richard Rebarber)
- Anastasia Mshvidobadze (David Logan)
- Brian Bockelman – joint CS/Math program (Tom Shores)
- Dan Buettner – joint CS/Math program (Tom Shores)
- In addition, we have a number of pre-doctoral students.
What We Want our Students to Acquire/Learn

- Basic real analysis (825-826) and complex variables (823)
- Applied mathematics (842-843)
- Linear algebra (817) and numerical linear algebra (847)
- Linear and nonlinear optimization (832-833)
- Mathematical programming skills in MATLAB, Maple, Mathematica and/or other computing platforms
- Probability and statistics
- Differential equations (ODE, PDE, difference equations, control theory)
- Specialty courses outside the department
- Collaboration with other students and science faculty
What We Want our Students to Acquire/Learn

- Basic real analysis (825-826) and complex variables (823)
- Applied mathematics (842-843)
- Linear algebra (817) and numerical linear algebra (847)
- Linear and nonlinear optimization (832-833)
- Mathematical programming skills in MATLAB, Maple, Mathematica and/or other computing platforms
- Probability and statistics
- Differential equations (ODE, PDE, difference equations, control theory)
- Specialty courses outside the department
- Collaboration with other students and science faculty
What We Want our Students to Acquire/Learn

- Basic real analysis (825-826) and complex variables (823)
- Applied mathematics (842-843)
- Linear algebra (817) and numerical linear algebra (847)
- Linear and nonlinear optimization (832-833)
- Mathematical programming skills in MATLAB, Maple, Mathematica and/or other computing platforms
- Probability and statistics
- Differential equations (ODE, PDE, difference equations, control theory)
- Specialty courses outside the department
- Collaboration with other students and science faculty
What We Want our Students to Acquire/Learn

- Basic real analysis (825-826) and complex variables (823)
- Applied mathematics (842-843)
- Linear algebra (817) and numerical linear algebra (847)
- Linear and nonlinear optimization (832-833)
- Mathematical programming skills in MATLAB, Maple, Mathematica and/or other computing platforms
- Probability and statistics
- Differential equations (ODE, PDE, difference equations, control theory)
- Specialty courses outside the department
- Collaboration with other students and science faculty
What We Want our Students to Acquire/Learn

- Basic real analysis (825-826) and complex variables (823)
- Applied mathematics (842-843)
- Linear algebra (817) and numerical linear algebra (847)
- Linear and nonlinear optimization (832-833)
- Mathematical programming skills in MATLAB, Maple, Mathematica and/or other computing platforms
- Probability and statistics
- Differential equations (ODE, PDE, difference equations, control theory)
- Specialty courses outside the department
- Collaboration with other students and science faculty
What We Want our Students to Acquire/Learn

- Basic real analysis (825-826) and complex variables (823)
- Applied mathematics (842-843)
- Linear algebra (817) and numerical linear algebra (847)
- Linear and nonlinear optimization (832-833)
- Mathematical programming skills in MATLAB, Maple, Mathematica and/or other computing platforms
- Probability and statistics
- Differential equations (ODE, PDE, difference equations, control theory)
- Specialty courses outside the department
- Collaboration with other students and science faculty
What We Want our Students to Acquire/Learn

- Basic real analysis (825-826) and complex variables (823)
- Applied mathematics (842-843)
- Linear algebra (817) and numerical linear algebra (847)
- Linear and nonlinear optimization (832-833)
- Mathematical programming skills in MATLAB, Maple, Mathematica and/or other computing platforms
- Probability and statistics
 - Differential equations (ODE, PDE, difference equations, control theory)
- Specialty courses outside the department
- Collaboration with other students and science faculty
What We Want our Students to Acquire/Learn

- Basic real analysis (825-826) and complex variables (823)
- Applied mathematics (842-843)
- Linear algebra (817) and numerical linear algebra (847)
- Linear and nonlinear optimization (832-833)
- Mathematical programming skills in MATLAB, Maple, Mathematica and/or other computing platforms
- Probability and statistics
- Differential equations (ODE, PDE, difference equations, control theory)
- Specialty courses outside the department
- Collaboration with other students and science faculty
What We Want our Students to Acquire/Learn

- Basic real analysis (825-826) and complex variables (823)
- Applied mathematics (842-843)
- Linear algebra (817) and numerical linear algebra (847)
- Linear and nonlinear optimization (832-833)
- Mathematical programming skills in MATLAB, Maple, Mathematica and/or other computing platforms
- Probability and statistics
- Differential equations (ODE, PDE, difference equations, control theory)
- Specialty courses outside the department
- Collaboration with other students and science faculty
What We Want our Students to Acquire/Learn

- Basic real analysis (825-826) and complex variables (823)
- Applied mathematics (842-843)
- Linear algebra (817) and numerical linear algebra (847)
- Linear and nonlinear optimization (832-833)
- Mathematical programming skills in MATLAB, Maple, Mathematica and/or other computing platforms
- Probability and statistics
- Differential equations (ODE, PDE, difference equations, control theory)
- Specialty courses outside the department
- Collaboration with other students and science faculty
What we read – Where we Publish

- Journal of Mathematical Biology
- Bulletin of Mathematical Biology
- Journal of Theoretical Biology
- Ecological Modelling
- Inverse Theory
- Journal of Differential Equations
- Applicable Analysis
- Applied Mathematics and Computation
- Mathematical and Computer Modelling
- Water Resources Research
- Journal of Hydrology
- SIAM Journal of Applied Mathematics
- SIAM Journal of Mathematical Analysis
- International Journal of Bifurcation and Chaos
- Mathematical Biosciences
Problem 1: Temperature Dependent Arthropod Interactions

- How does increased CO_2 levels and temperature changes associated with global climate change affect predator-prey interactions? Herbivore-plant interactions?
- Do these levels cause shifts in their phenologies (development)
- Use differential and difference equations to model the interactions, predict populations, include stochastic effects, stability (?), etc.
Problem 1: Temperature Dependent Arthropod Interactions

- How does increased CO_2 levels and temperature changes associated with global climate change affect predator-prey interactions? Herbivore-plant interactions?
- Do these levels cause shifts in their phenologies (development)
- Use differential and difference equations to model the interactions, predict populations, include stochastic effects, stability (?), etc.
Problem 1: Temperature Dependent Arthropod Interactions

- How does increased CO_2 levels and temperature changes associated with global climate change affect predator-prey interactions? Herbivore-plant interactions?
- Do these levels cause shifts in their phenologies (development)
- Use differential and difference equations to model the interactions, predict populations, include stochastic effects, stability (?), etc.
Problem 1: Temperature Dependent Arthropod Interactions

- How does increased CO$_2$ levels and temperature changes associated with global climate change affect predator-prey interactions? Herbivore-plant interactions?
- Do these levels cause shifts in their phenologies (development)
- Use differential and difference equations to model the interactions, predict populations, include stochastic effects, stability (?), etc.
Problem 2: Applied Nonlinear Analysis in Ecological Models

- Mechanistic understanding of chaos generation, cycles, equilibrium
- Requires global and geometrical multi-timescale analysis from dynamical systems and bifurcation theory
- Computation and visualization are essential
Problem 2: Applied Nonlinear Analysis in Ecological Models

- Mechanistic understanding of chaos generation, cycles, equilibrium
- Requires global and geometrical multi-timescale analysis from dynamical systems and bifurcation theory
- Computation and visualization are essential
Problem 2: Applied Nonlinear Analysis in Ecological Models

- Mechanistic understanding of chaos generation, cycles, equilibrium
- Requires global and geometrical multi-timescale analysis from dynamical systems and bifurcation theory
- Computation and visualization are essential
Problem 2: Applied Nonlinear Analysis in Ecological Models

- Mechanistic understanding of chaos generation, cycles, equilibrium
- Requires global and geometrical multi-timescale analysis from dynamical systems and bifurcation theory
- Computation and visualization are essential
Problem 3: Invasion Ecology and Thistle Spread in Nebraska

- Model the spread of a particular species of thistle (monocarpic Eurasian Cirsium vulgare).
- Determine the reliability of the model given that data measurements are uncertain.
- Requires knowledge of linear algebra (eigenvalue theory), sensitivity and elasticity analysis, statistics.
Problem 3: Invasion Ecology and Thistle Spread in Nebraska

- Model the spread of a particular species of thistle (monocarpic Eurasian Cirsium vulgare).
- Determine the reliability of the model given that data measurements are uncertain.
- Requires knowledge of linear algebra (eigenvalue theory), sensitivity and elasticity analysis, statistics.
Problem 3: Invasion Ecology and Thistle Spread in Nebraska

- Model the spread of a particular species of thistle (monocarpic Eurasian Cirsium vulgare).
- Determine the reliability of the model given that data measurements are uncertain.
- Requires knowledge of linear algebra (eigenvalue theory), sensitivity and elasticity analysis, statistics.
Problem 3: Invasion Ecology and Thistle Spread in Nebraska

- Model the spread of a particular species of thistle (monocarpic Eurasian Cirsium vulgare).
- Determine the reliability of the model given that data measurements are uncertain.
- Requires knowledge of linear algebra (eigenvalue theory), sensitivity and elasticity analysis, statistics.
Problem 4: Determine Basic Properties of a Nonresonant Schrödinger Equation

- Is the system completely integrable?
- Does it have a Hamiltonian structure?
- What is the long time behavior of solutions?
Problem 4: Determine Basic Properties of a Nonresonant Schrödinger Equation

- Is the system completely integrable?
- Does it have a Hamiltonian structure?
- What is the long time behavior of solutions?
Problem 4: Determine Basic Properties of a Nonresonant Schrödinger Equation

- Is the system completely integrable?
- Does it have a Hamiltonian structure?
- What is the long time behavior of solutions?
Problem 4: Determine Basic Properties of a Nonresonant Schrödinger Equation

- Is the system completely integrable?
- Does it have a Hamiltonian structure?
- What is the long time behavior of solutions?
Problem 5: Detecting Diffusive Behavior in Criminal Statistics

- Certain criminal activities have been observed to have diffusive characteristics. Can such data be fitted to a predictive mathematical model?
- Requires knowledge of inverse theory, GIS knowledge, PDEs, numerical methods for solving PDEs
- Requires collaboration with computer science and criminology specialists.
Problem 5: Detecting Diffusive Behavior in Criminal Statistics

- Certain criminal activities have been observed to have diffusive characteristics. Can such data be fitted to a predictive mathematical model?
- Requires knowledge of inverse theory, GIS knowledge, PDEs, numerical methods for solving PDEs.
- Requires collaboration with computer science and criminology specialists.
Problem 5: Detecting Diffusive Behavior in Criminal Statistics

- Certain criminal activities have been observed to have diffusive characteristics. Can such data be fitted to a predictive mathematical model?

- Requires knowledge of inverse theory, GIS knowledge, PDEs, numerical methods for solving PDEs

- Requires collaboration with computer science and criminology specialists.
Problem 5: Detecting Diffusive Behavior in Criminal Statistics

Certain criminal activities have been observed to have diffusive characteristics. Can such data be fitted to a predictive mathematical model?

Requires knowledge of inverse theory, GIS knowledge, PDEs, numerical methods for solving PDEs

Requires collaboration with computer science and criminology specialists.
No matter what area you choose, Nebraska is a great place to learn and do mathematics!