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De�nition

Standard (continuous) Brownian motion, or Wiener process, over

[0,T ]: a random variable W (t) depending continuously on

t ∈ [0,T ] such that

1 W (0) = 0 with probability 1.

2 For 0 ≤ s < t ≤ T the random variable

W (t)−W (s) ∼ N (0, t − s) .

3 For 0 ≤ s < t < u < v ≤ T the random variables

W (t)−W (s) and W (v)−W (u) are independent.
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Discretized Brownian Motion

Discretized Brownian motion over [0,T ] in N steps: a sequence of

random variable Wj = W (tj), where δt = T/N and tj = j δt, such
that

1 W (0) = 0 with probability 1.

2 For j = 1, 2, . . . ,N, Wj = Wj + dWj .

3 For j = 1, 2, . . . ,N, dWj ∼ N (0, δt) .

Notice that items (1)�(3) of continuous Brownian motion follow

from these conditions. In fact, thanks to independence and

identical distributions,

Wj+k −Wj =
k∑
i=1

dWi ∼ N (0, k δt) .

(Recall, for independent X ,Y , E [aX + bY ] = aE [X ] + bE [Y ] and
var (aX + bY ) = a2var (X ) + b2var (Y ). )
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Simulations

Here is the �le used by Higham. Let's run it and play with the

parameters. In particular, rem out the resetting of the random

number generator:

% BPATH2 Brownian path simulation: vectorized

randn('state',100) % set the state of randn

T = 1; N = 500; dt = T/N;

dW = sqrt(dt)*randn(1,N); % increments

W = cumsum(dW); % cumulative sum

plot([0:dt:T],[0,W],'r-') % plot W against t

xlabel('t','FontSize',16)

ylabel('W(t)','FontSize',16,'Rotation',0)



Function of Brownian Motion Simulation

We can also simulate random walks that are functions of Brownian

motion. Here is the example of

X (t) = u (W (t) , t) = e(t+
1
2
W (t))

%BPATH3 Function along a Brownian path

randn('state',100) % set the state of randn

T = 1; N = 500; dt = T/N; t = [dt:dt:1];

M = 1000; % M paths simultaneously

dW = sqrt(dt)*randn(M,N); % increments

W = cumsum(dW,2); % cumulative sum

U = exp(repmat(t,[M 1]) + 0.5*W);

Umean = mean(U);

plot([0,t],[1,Umean],'b-'), hold on % plot mean over M

paths

plot([0,t],[ones(5,1),U(1:5,:)],'r--'), hold off % plot 5

individual paths

xlabel('t','FontSize',16)

ylabel('U(t)','FontSize',16,'Rotation',0,'HorizontalAlignment','right')

legend('mean of 1000 paths','5 individual paths',2)

averr = norm((Umean - exp(9*t/8)),'inf') % sample error
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Ito

Let W (t) be a Wiener process and h(t) a function of t. Then we

de�ne

X (t)− X (0) =

∫ t

0

h(τ) dW (τ)

provided that X (t) is a random process such that

X (t)− X (0) = lim
m→∞

N−1∑
j=0

h (tj) (W (tj+1)−W (tj))

where 0 = t0 < t1 < · · · < tN = t and maxj (tj+1 − tj) → 0 as

N →∞.

T. Shores Math Finance Seminar: Numerical Simulation of SDEs
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Stratonovich

Let W (t) be a Wiener process and h(t) a function of t. Then we

de�ne

X (t)− X (0) =

∫ t

0

h(τ) dW (τ)

provided that X (t) is a random process such that

X (t)− X (0) = lim
m→∞

N−1∑
j=0

h

(
tj + tj+1

2

)
(W (tj+1)−W (tj))

where 0 = t0 < t1 < · · · < tN = t and maxj (tj+1 − tj) → 0 as

N →∞.
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A Special Case: Ito

Take h (t) = W (t). Some shorthand: Wj = W (tj),
Wj+1/2 = W

(
tj + δt

2

)
= W (tj + tj+1) and dWj = Wj+1 −Wj .

Thus WN = W (T ) and W0 = W (0). For the Ito integral:

Note the identity

b (a − b) =
1

2

(
a2 − b2 − (a − b)2

)
Hence

N−1∑
j=0

Wj (Wj+1 −Wj) =
1

2

N−1∑
j=0

(
W

2

j+1
−W 2

j − (dWj)
2

)

=
1

2

W (T )2 −W (0)2 −
N−1∑
j=0

(dWj)
2


T. Shores Math Finance Seminar: Numerical Simulation of SDEs
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A Special Case:Ito

Now recall from statistics that i.i.d. r.v.'s

X1, . . . ,XN ∼ N
(
µ, σ2

)
, then

Y =
N∑
j=1

(
Xi − µ

σ

)2

∼ χ2 (N) ,

which has mean N and variance 2N.

Hence, since δWj ∼ N (0, δt), we have that

N−1∑
j=0

(dWj)
2 =

N−1∑
j=0

(Wj+1 −Wj)
2 ∼ δt χ2 (N) .

Thus, this sum has mean N δt = T and variance

δt2 2N = 2T δt.

So it is reasonable that the sum approaches T as δt → 0.

Hence

∫ T

0

W (t) dW (t) =
1

2
W (T )2 − 1

2
T .
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A Special Case:Stratonovich

Take h (t) = W (t). For the Stratonovich integral:

Note the identity

Wj+1/2 =
Wj +Wj+1

2
+

1

2

(
Wj+1/2 −Wj+1

)
+

1

2

(
Wj+1/2 −Wj

)
=
Wj +Wj+1

2
+

1

2
(−Uj) +

1

2
(Vj) ,

where Uj ,Vj ∼ N
(
0, δt

2

)
are independent r.v.'s.

Note Wj+1 −Wj = Uj + Vj and set ∆Zj = 1

2
(−Uj + Vj).

T. Shores Math Finance Seminar: Numerical Simulation of SDEs
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A Special Case:Stratonovich

Now expand (at the board) and really get the telescoping
e�ect, so the sum becomes

N−1∑
j=0

Wj+1/2 (Wj+1 −Wj) =
N−1∑
j=0

(
Wj +Wj+1

2
+ ∆Zj

)
(Wj+1 −Wj)

=
1

2

(
W (T )2 −W (0)2

)
+

N−1∑
j=0

∆Zj (Wj+1 −Wj)

Each term in the latter sum is a 1

2

(
V 2

j − U2

j

)
, so has mean

zero and variance δt2

4
, since U2

j ,V
2

j ∼
δt
2
χ2 (1) are

independent.

Hence, the sum of these independent variables is a random

variable of mean zero and variance N δt δt
4

= T
4
δt.

Hence,

∫ T

0

W (t) dW (t) =
1

2
W (T )2.
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Simulations

The �le stint.m:
% Ito and Stratonovich integrals of W dW

randn('state',100) % set the state of randn

T = 1; N = 500; dt = T/N;

dW = sqrt(dt)*randn(1,N); % increments

W = cumsum(dW); % cumulative sum

ito = sum([0,W(1:end-1)].*dW)

strat = sum((0.5*([0,W(1:end-1)]+W) +

0.5*sqrt(dt)*randn(1,N)).*dW)

itoerr = abs(ito - 0.5*(W(end)^2-T))

straterr = abs(strat - 0.5*W(end)^2)

T. Shores Math Finance Seminar: Numerical Simulation of SDEs
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Deterministic De�nitions

Deterministic Di�erential Equation:

To compute a function x (t), 0 ≤ t ≤ T , such that on the interval

[0,T ], given x (0) (this is an IVP, really):

Derivative form:
dx

dt
= f (x , t).

Di�erential form: dx = f (x , t) dt.

Integral form: x (t) = x (0) +

∫ t

0

f (x (s) , s) ds.

Each has a point of view about the ODE, but these are all

equivalent de�nitions involving deterministic variability f (x , t).

T. Shores Math Finance Seminar: Numerical Simulation of SDEs
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dx
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Stochastic Di�erential Equation:

To compute a stochastic process X (t), 0 ≤ t ≤ T , such that on

the interval [0,T ], given X (0) (this is an IVP, really):
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g (X (s) , s) dW (s).

Caution: either form forces us to make a choice about which is

the appropriate stochastic integral to use.
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Example (Risky Asset Pricing, a.k.a., Geometric Brownian Motion):

An asset price X (t) can be viewed as a random process. The

relative change in price, dX (t) /X (t) can be viewed as having two

(additive) components:

A deterministic factor: λdt. If there were no risk, we could

think of λ as the growth rate over time. In the simplest case,

λ is constant.

A random factor: µdW (t), where dW =
√
dtZ , Z ∼ N (0, 1)

and W (t) is Brownian motion. In the simplest case, µ is

constant.

So the stochastic di�erential equation that results is the linear

di�erential equation

dX (t)

X (t)
= λ dt + µ dW (t)

or dX (t) = λX (t) dt + µX (t) dW (t) (multiplicative noise).

Exact solution: X (t) = X (0) e(λ− 1
2
µ2)t+µW (t).
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Brownian Motion
Stochastic Integrals

Stochastic Di�erential Equations
Euler-Maruyama Method

Convergence of EM Method
Milstein's Higher Order Method

Linear Stability
Stochastic Chain Rule

Parting Shots

Deterministic Case
Numerical Solutions:

Discretize time 0 = t0 < t1 < · · · < tN = T , tj+1 − tj = ∆t.

March forward in time to compute xj ≈ x (tj) using the identity

x (tj+1) = x (tj) +

∫ tj+1

tj

f (x (s) , s) ds.

Explicit Euler (left Riemann sums): xj+1 = xj + f (xj , tj) ∆t

Implicit Euler (right Riemann sums):

xj+1 = xj + f (xj+1, tj+1) ∆t, j = 0, 1, . . . ,N − 1.

Applied to the model problem x (0) = 1, dx = λx dt, these
give respectively xj = (1 + λ ∆t)j and xj = 1/ (1− λ ∆t)j ,
resp. (Exact solution: x (t) = eλt .)
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Convergence and stability of the Euler methods:

Classical analysis shows that under reasonable conditions, the

methods are convergent of order one in ∆t, i.e.,

‖[xj − x (tj)]‖ = O (∆t), δt → 0.

The methods are stable in this sense: There is a positive h0
such that for h ∈ (0, h0), if |x0 − x (0)| ≤ ε, then
‖[xj − x (tj)]‖ = O (ε), ε → 0.

NB: this version of stability only applies to �nite interval

problems on [0,T ]. What about long term behavior?

De�ne the linear stability domain of a method to be the

subset D = {z = λ ∆t | limj→∞ xj = 0} where the sequence

{xj} is produced by applying the method to the model problem

dx/dt = λx , x (0) = 1.

The method is A-stable if D contains the open left half-plane.

Reason: negative < (λ) and positive ∆t are main parameters

of interest for asymptotic (or absolute) stability since then the

solution x (t) = x (0) eλt to the ODE is �asymptotically

stable.�

Now examine the stability of both Euler methods.
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Stochastic Case: Euler-Maruyama Method

Numerical Solutions to

dX (t) = f (X (t) , t) dt + g (X (t) , t) dW (t):

Discretize time 0 = τ0 < τ1 < · · · < τN = T , τj+1 − τj = ∆t.

March forward in time to compute Xj ≈ X (τj) using the

identity

X (τj+1) = X (τj) +

∫ τj+1

τj

f (X (s) , s) ds

= +

∫ τj+1

τj

g (X (s) , s) dW (s) .

.

Euler-Maruyama (EM) method:

Xj+1 = Xj + f (Xj , τj) ∆t + g (Xj , τj) (W (τj+1)−W (τj))

Convergence and stability need re-interpretation here.
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Computational Example

Implementation Convention: A discrete Brownian path is generated

using dt. Then the Euler-Maruyama time step is a multiple of dt,

say R ∗ dt = ∆t .
%EM Euler-Maruyama method on linear SDE

%

% SDE is dX = lambda*X dt + mu*X dW, X(0) = Xzero,

% where lambda = 2, mu = 1 and Xzero = 1.

%

% Discretized Brownian path over [0,1] has dt = 2^(-8).

% Euler-Maruyama uses timestep R*dt.

randn('state',100)

lambda = 2; mu = 1; Xzero = 1; % problem parameters

T = 1; N = 2^8; dt = T/N;

dW = sqrt(dt)*randn(1,N); % Brownian increments

W = cumsum(dW); % discretized Brownian path



Computational Example Continued

Xtrue = Xzero*exp((lambda-0.5*mu^2)*([dt:dt:T])+mu*W);

plot([0:dt:T],[Xzero,Xtrue],'m-'), hold on

R = 4; Dt = R*dt; L = N/R; % L EM steps of size Dt = R*dt

Xem = zeros(1,L); % preallocate for efficiency

Xtemp = Xzero;

for j = 1:L

Winc = sum(dW(R*(j-1)+1:R*j));

Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp*Winc;

Xem(j) = Xtemp;

end

plot([0:Dt:T],[Xzero,Xem],'r--*'), hold off

xlabel('t','FontSize',12)

ylabel('X','FontSize',16,'Rotation',0,'HorizontalAlignment','right')

emerr = abs(Xem(end)-Xtrue(end))



Strong Convergence

Numerical Method for dX = f (X , t) dt + g (X , t) dW on [0,T ]:

Converges strongly if mean of the error converges to zero,

i.e.,

lim
n→∞

E [|Xn − X (τ)|] = 0,

and with order of convergence γ if there exists C > 0

such that for any �xed τ = n∆t ∈ [0,T ],

E [|Xn − X (τ)|] ≤ C∆tγ

for all ∆t su�ciently small. Put another way, the expected

value of the error is O (∆t), ∆t → 0.

Uniform order convergence does follow for EM, but this isn't

obvious, nor is it the form of the de�nition of strong

convergence in Kloeden-Platen, as is apparently the case here.
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An Experiment

Idea Behind the Experiment:

If you think that there is a valid order condition

E∆t ≤ C∆tγ ,

assume that the inequality is sharp and replace it by

E∆t ≈ C∆tγ .

Take logs of both sides and get

Y∆t = log E∆t ≈ logC + γ log∆t.

Do a log-log plot of E∆t against ∆t.

A graph that resembles a straight line of slope γ and intercept

logC supports your suspicion.
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An Experiment Continued

Compute geometric Brownian motion by taking the mean of 1000

di�erent Brownian paths on [0, 1] at T = τ = 1. Use δt = 2−9 and

∆t = 2p−1 δt, 1 ≤ p ≤ 5. Then do a log-log plot, linear regression

to estimate γ (q in the program), and the norm of the residual:
%EMSTRONG Test strong convergence of Euler-Maruyama

% Solves dX = lambda*X dt + mu*X dW, X(0) = Xzero,

% where lambda = 2, mu = 1 and Xzer0 = 1.

% Discretized Brownian path over [0,1] has dt = 2^(-9).

% E-M uses 5 different timesteps: 16dt, 8dt, 4dt, 2dt, dt.

% Examine strong convergence at T=1: E | X_L - X(T) |.

randn('state',100)

lambda = 2; mu = 1; Xzero = 1; % problem parameters

T = 1; N = 2^9; dt = T/N; %

M = 1000; % number of paths sampled

Xerr = zeros(M,5); % preallocate array

for s = 1:M, % sample over discrete Brownian paths

dW = sqrt(dt)*randn(1,N); % Brownian increments

W = cumsum(dW); % discrete Brownian path

Xtrue = Xzero*exp((lambda-0.5*mu^2)+mu*W(end));



An Experiment Continued
for p = 1:5

R = 2^(p-1); Dt = R*dt; L = N/R; % L Euler steps of size Dt =

R*dt

Xtemp = Xzero;

for j = 1:L

Winc = sum(dW(R*(j-1)+1:R*j));

Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp*Winc;

end

Xerr(s,p) = abs(Xtemp - Xtrue); % store the error at t = 1

end

end

Dtvals = dt*(2.^([0:4]));

subplot(221) % top LH picture

loglog(Dtvals,mean(Xerr),'b*-'), hold on

loglog(Dtvals,(Dtvals.^(.5)),'r--'), hold off % reference slope

of 1/2

axis([1e-3 1e-1 1e-4 1])

xlabel('\Delta t'), ylabel('Sample average of | X(T) - X_L |')

title('emstrong.m','FontSize',10)

%%%% Least squares fit of error = C * Dt^q %%%%

A = [ones(5,1), log(Dtvals)']; rhs = log(mean(Xerr)');

sol = A\rhs; q = sol(2)

resid = norm(A*sol - rhs)



Weak Convergence

Numerical Method for

dX (t) = f (X (t) , t) dt + g (X (t) , t) dW (t) on [0,T ]:

Converges weakly if mean of functions of the error taken

from some set of test functions (like polynomials, which

would give moments) converges to zero, i.e.,

lim
n→∞

|E [p (Xn)]− E [p (X (τ))]| = 0,

and with order of convergence γ if there exists C > 0

such that for any �xed τ = n∆t ∈ [0,T ],

|E [p (Xn)]− E [p (X (τ))]| ≤ C∆tγ

for all ∆t su�ciently small.
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An Experiment

Note: We have assumed that errors other than sampling error like

�oating point error and sampling bias are negligible compared to

sampling error. This is reasonable in relatively small experiments.
%EMWEAK Test weak convergence of Euler-Maruyama

% Solves dX = lambda*X dt + mu*X dW, X(0) = Xzero,

% where lambda = 2, mu = 1 and Xzer0 = 1.

% E-M uses 5 different timesteps: 2^(p-10), p = 1,2,3,4,5.

% Examine weak convergence at T=1: | E (X_L) - E (X(T)) |.

% Different paths are used for each E-M timestep.

% Code is vectorized over paths.

% Uncommenting the line indicated below gives the weak E-M

method.

randn('state',100);

lambda = 2; mu = 0.1; Xzero = 1; T = 1; % problem parameters

M = 50000; % number of paths sampled

Xem = zeros(5,1); % preallocate arrays

for p = 1:5 % take various Euler timesteps

Dt = 2^(p-10); L = T/Dt; % L Euler steps of size Dt

Xtemp = Xzero*ones(M,1);



An Experiment Continued

for j = 1:L

Winc = sqrt(Dt)*randn(M,1);

% Winc = sqrt(Dt)*sign(randn(M,1)); %% use for weak E-M %%

Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp.*Winc;

end

Xem(p) = mean(Xtemp);

end

Xerr = abs(Xem - exp(lambda));

Dtvals = 2.^([1:5]-10);

subplot(222) % top RH picture

loglog(Dtvals,Xerr,'b*-'), hold on

loglog(Dtvals,Dtvals,'r--'), hold off % reference slope of 1

axis([1e-3 1e-1 1e-4 1])

xlabel('\Delta t'), ylabel('| E(X(T)) - Sample average of X_L |')

title('emweak.m','FontSize',10)

%%%% Least squares fit of error = C * dt^q %%%%

A = [ones(p,1), log(Dtvals)']; rhs = log(Xerr);

sol = A\rhs; q = sol(2)

resid = norm(A*sol - rhs)



Brownian Motion
Stochastic Integrals

Stochastic Di�erential Equations
Euler-Maruyama Method

Convergence of EM Method
Milstein's Higher Order Method

Linear Stability
Stochastic Chain Rule

Parting Shots

The Method

A careful study of Ito-Taylor expansions leads to a higher order

method (Milstein's method):

Xj+1 = Xj + f (Xj , τj) ∆t + g (Xj , τj) (W (τj+1)−W (τj))

+
1

2
g (Xj) gx (Xj , τj)

(
(W (τj+1)−W (τj))

2 −∆t
)

T. Shores Math Finance Seminar: Numerical Simulation of SDEs



Brownian Motion
Stochastic Integrals

Stochastic Di�erential Equations
Euler-Maruyama Method

Convergence of EM Method
Milstein's Higher Order Method

Linear Stability
Stochastic Chain Rule

Parting Shots

An Experiment

Now run the experiment milstrong.m to solve the population

dynamics stochastic di�erential equation (the stochastic Verhulst

equation)

dX (t) = rX (t) (K − X (t)) dt + βX (t) dW (t)

which is simply a stochastic logistic equation.

One interesting aspect of the program: the exact (strong) solution

is well known, but involves another stochastic integral. Hence, the

most accurate solution (smallest ∆t) is used as a �reference�

solution.

T. Shores Math Finance Seminar: Numerical Simulation of SDEs



Brownian Motion
Stochastic Integrals

Stochastic Di�erential Equations
Euler-Maruyama Method

Convergence of EM Method
Milstein's Higher Order Method

Linear Stability
Stochastic Chain Rule

Parting Shots

The Deterministic Case

Long Term Stability of the Euler Methods:

Does not mean stability on �nite intervals, which would require

that perturbations in initial conditions cause perturbations in

the computed solution that remain bounded as δt → 0.

De�ne the linear stability domain of a method to be the

subset D = {z = λ ∆t | limj→∞ xj = 0} where the sequence

{xj} is produced by applying the method to the model problem

dx/dt = λx , x (0) = 1.

The method is A-stable if D contains the open left half-plane.

Reason: negative < (λ) and positive ∆t are main parameters

of interest for this asymptotic (or absolute) stability.

T. Shores Math Finance Seminar: Numerical Simulation of SDEs
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The Stochastic Case

Long Term Stability in Stochastic Setting:

The model problem is

dX (t) = λX (t) dt + µX (t) dW (t) .

Solution:

X (t) = X (0) e(λ− 1
2
µ2)t+µW (t)

The mathematical stability of a solution comes in two �avors,

assuming that X (0) 6= 0 with probability 1.

Mean-square stability:

lim
t→∞

E
[
X (t)2

]
= 0⇐⇒ < (λ) +

1

2
|µ|2 < 0.

Stochastic asymptotic stability:

lim
t→∞

∣∣∣X (t)2
∣∣∣ = 0, with probability 1⇐⇒ <

(
λ− 1

2
µ2

)
< 0.

We see from these that mean-square implies asymptotic.
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The Numerical Stochastic Case

Long Term Stability of Numerical Method:

One can show:

Mean-square stability of a numerical method:

lim
j→∞

E
[
X 2

j

]
= 0⇐⇒ |1 + ∆t λ|2 +

1

2
∆t |µ|2 < 0.

Stochastic asymptotic stability of a numerical method:

lim
j→∞

∣∣X 2

j

∣∣ = 0, with probability 1,

⇐⇒ E
[
log

∣∣∣1 + ∆t λ +
√

∆tµN (0, 1)
∣∣∣] < 0.
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Experiments

Run the script stab.m. Settings are ∆t = 1, 1/2, 1/4, λ = 1/2, and
µ =

√
6. For asymptotic stability, run over a single path, while for

mean-square stability, an average of paths. Note, ideally in

mean-square case we should have straight line graphs, since we

calculate logy graphs.
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Deterministic Case

Let's start with the deterministic chain rule: given a function

F (x , t), the �rst order di�erential is given by

df =
∂F (x , t)

∂x
dx +

∂F (x , t)

∂t
dt,

which gives �rst order (linear) approximations by the Taylor

formula. Of course, if x = x (t), we simply plug that into the

formula for the one variable di�erential. We might reason

accordingly that if X = X (t), is a stochastic process, then we

should be able to plug X into x and get the correct di�erential.

Wrong! Well, at least if you use Ito integrals. (With Stratonovich

integrals you would be right.)
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Stochastic Chain Rule

For a function F (X , t) of a stochastic process X (t):

Start over with a Taylor expansion

dF =
∂F (x , t)

∂x
dx +

∂F (x , t)

∂t
dt +

1

2

∂2F (x , t)

∂x2
dx2

+
∂2F (x , t)

∂x∂t
dx dt +

1

2

∂2F (x , t)

∂t2
dt2.

Now make the substitutions x = X (t) and
dx = dX (t) = f (X (t) , t) dt + g (X (t) , t) dW (t).

For a �rst order (linear) approximation, we have no problem in

discarding the higher order dt2 term.

Nor does the mixed term present a problem:

dX dt = (f (X (t) , t) dt + g (X (t) , t) dW (t)) dt.

But dW (t) ∼
√
dtN (0, 1), so dX dt is of order dt3/2
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Ito's Formula

Ito formula for dX (t) = f (X (t) , t) dt + g (X (t) , t) dW (t):

The problem is with the second order term in dx2 because

dW 2 ∼ δt χ2 (1), which has mean δt and variance 2δt2. So it

is reasonable that the term approaches δt as δt → 0.

The net result is that

dF =
∂F (X , t)

∂X
dX +

∂F (X , t)

∂t
dt +

1

2

∂2F (X , t)

∂X 2
dX 2.

Substitute dX = f dt + g dW , discard dW dt and dt2 terms

and get

dF =

(
FX f + Ft +

1

2
FXXg

2

)
dt + FXg dW
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Applications

Example

The linear model for volatile stock price X (t)with drift λ and

volatility µ

dX (t) = λX (t) dt + µX (t) dW (t) .

Suppose a portfolio consists of an option (buy or sell) for a share of

the stock with price p (X , t), and a short position of ∆ shares of it.

It's value: F = p (X , t)−∆X . By the Ito formula,

dF =

(
(pX −∆) λX + pt +

1

2
pXXµ2X 2

)
dt + (pX −∆) µX dW .
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Some Elementary Inequalities

Theorem

(Markov Inequality) Let u (X ) be a non-negative function of the

r.v. X with �nite expected value. For all positive a,

P (u (X ) ≥ a) ≤ E [u (X )]

a
.

Theorem

(Chebychev Inequality) If the r.v. X has �nite variance σ2 and

expected value µ, then for all positive k

P [|X − µ| ≥ kσ] ≤ 1

k2
.
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Proofs

Remarkably simple!

For Markov, let event E = {x | u(x) ≥ a} and f (x) be p.d.f.

of X .

E [u (X )] =

∫ ∞

−∞
u (x) f (x) dx ≥

∫
E

af (x) dx = aP (E ) .

Now divide by a and we're done!

For Chebychev, take u (X ) = (X − µ)2, a = σ2k2 and obtain

from Markov

P (|X − µ| ≥ kσ) ≡ P
(
(X − µ)2 ≥ σ2k2

)
≤ σ2

σ2k2
=

1

k2
.

Done!
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Applications

Recall that a sequence Xn of r.v.'s converges in probability to r.v.

X if for all ε > 0,

lim
n→∞

P (|Xn − X | ≥ ε) = 0.

With this de�nition and the previous theorems, we can explain �it is

reasonable that...�
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�It is reasonable that...�

(In derivation for
∫ T

0
W (t) dW (t)),

�
∑N−1

j=0
(dWj)

2 =
∑N−1

j=0
(Wj+1 −Wj)

2 ∼ δt χ2 (N). Thus,

this sum has mean N δt = T and variance δt2 2N = 2T δt. So
it is reasonable that the sum approaches T as δt → 0.�

Let XN =
∑N−1

j=0
(dWj)

2and let k = 1/
√

δt, so that

kσ =
1√
δt
2T δt = 2T

√
T√
N

=
2T 3/2

√
N

, and k2 =
1

δt
=

N

T
.

Hence

P

[
|XN − T | ≥ 2T 3/2

√
N

]
≤ T

N
→ 0 as N →∞.

Hence XN converges to T in probability.
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�It is reasonable that...�

(In derivation of Ito's formula) �The problem is with the

second order term in dx2 because dW 2 ∼ δt χ2 (1), which has

mean δt and variance 2δt2. So it is reasonable that the term

approaches δt as δt → 0.�

Take δt = 1/N, XN = dW 2/δt, k = 1/
(
2
√

δt
)
and as above

obtain that

P

[
|XN − 1| ≥ 1√

N

]
≤ 4

N
→ 0 as N →∞.

Hence dW 2/δt converges to 1 in probability.
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One More Application

Suppose that an iterative method is strongly convergent at

τ = T of order γ, so that

E [|Xn − X (τ)|] ≤ C∆tγ .

It follows that

E [|Xn − X (τ)|]
∆tγ/2

≤ C∆tγ/2.

By Markov,

P
(
|Xn − X (τ)| ≥ ∆tγ/2

)
≤ C∆tγ/2,

which is a strong statement about individual paths. For

example, EM has γ = 1/2. Compare this with weak

convergence.
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