
Numerical Analysis Seminar Spring 2016 Notes

These notes contain sample problems for various methods examined in
the Spring 2106 Numerical Analysis Seminar organized by Professor Adam
Larios.

Our first objective is to run the march*.m files through some tests. Think
of these files as a kind of “Swiss army knife” of convection-diffusion problems.
We make no claims as to efficiency – the code certainly could be sped up for
special instances. Nor suitability – caveat emptor. Right now we just want
to get correct answers (or understand why we don’t!). In all these examples
a suitable number of steps and nodes was determined by trial and error, the
error being pretty spectacular with bad choices!

There are lots of user parameters that need to be inspected in order to set
up a problem. Here are the parameters that should be set:

• marchRHS.m: This function file defines the right hand side of the
Fourier transformed version for our problem. In general user must
define the functions at the end of the file according as the true flags
are set in marchTest.m: marchP(v2,v,t), marchQ(v2,v,t), marchB(t),
marchD(x) and marchF(x,t).

• marchTest.m: This is the driver function file that runs everything.
User must set the parameters gpFlag, gqFlag, gfFlag, gbFlag, marchMTD,
numProfiles, numSteps, T, N, gL (variables with prefix g are global
– get over it!). Also, user must define functions marchIC and, if
defined, marchSoln.

Example 1. Consider the model problem

ut = Duxx + f(x, t), 0 < x < L, 0 < t < T

u(x, 0) = g(x), 0 ≤ x ≤ L.

u(0, t) = B(t), u(1, t) = B(t), t > 0.

We will use the forcing term f(x, t) to enable us to cook up solutions (a nice
way to test our algorithms and programming, but not necessarily enlighten-
ing about the nature of the unvarnished problem). Our first test solution
uses D = 1 and is given by

u (x, t) = e−t sinx, 0 < x < 2π, 0 < t < 2,

ut = −e−t sinx,

uxx = −e−t sinx.

This test solution defines the rest of the problem:

u (0, t) = u (2π, t) = 0,

u (x, 0) = sin (x) ,

f (x, t) = 0.

So in this simple case a forcing term is not really needed. The resulting
calculation using marchTest.m with N = 32, gL = 2π, T = 2, numProfiles =

1



2

5, numSteps = 50, mtd = ’ERK4’, uFlag true and gpFlag, gqFlag, gbFlag
and gfFlag set to false (no need for f(x, t) here) yields an absolute L2 norm
error ~3.7e-11 and infinity norm error of final profile ~9.3e-12.

Example 2. Repeat the model problem of Example 1 with D = 1/2, L = 2π,
T = 3 and ignore the boundary conditions,

u (x, t) = e−t/2 sin2 x, 0 < x < 2π, 0 < t < 3,

ut = −
e−t/2

2
sin2 x,

Dux = De−t/2 sin (2x)

Duxx = 2De−t/2 cos (2x) .

This test solution defines the rest of the problem, but in this case we are
going to use f(x, t) with

u (x, 0) = sin2 (x) ,

f (x, t) = −
e−t/2

2

(

4D cos (2x) + sin2 (x)
)

.

The resulting calculation using convectTest.m with N = 16, gL = 2π, T =
3, numProfiles = 5, numSteps = 25, mtd = ’ERK4’, and using marchHS.m
with pFlag, qFlag and bFlag set to false and fFlag, uFlag set to true, yields
an L2 norm error ~1.3e-09 and infinity norm error of final profile ~4.9e-10.

Example 3. Repeat the model problem of Example 1 with D = 1/4, gL = 5,
T = 4 and ignore the boundary conditions, but this time we don’t have a
solution to check, so we’ll just plot pictures. We are going to test a pulse of
the form

u (x, 0) =

⎧

⎨

⎩

0, 0 ≤ x < 2
1, 2 ≤ x < 3
0, 3 ≤ x ≤ 5.

The resulting calculation using marchTest.m with N = 32, L = 5, T = 3,
numProfiles = 5, numSteps = 50, mtd = ’ERK4’, gpFlag, gqFlag, gfFlag,
gbFlag and uFlag set to false will yield a picture of the profiles. So the
result is that the pulse is nicely smoothed out with decreasing L2-norm on
the interval [0, L].

Example 4. Ok, time for something a bit different. Let’s try a viscous
Burgers’ equation of the form

ut = Duxx − uux, 0 < x < L, 0 < t < T

u(x, 0) = g(x), 0 ≤ x ≤ L.

u(0, t) = B(t), u(1, t) = B(t), t > 0.



3

with L = 6, T = 4 and D = 1/4. Except that we will not enforce a boundary
condition, nor do we have a solution in hand. We impose the initial condition

u(x, 0) =
1

√
0.2 · 2π

e−(x−3)2/0.4

The resulting calculation using marchTest.m with N = 32, gL = 6, T = 4,
numProfiles = 5, numSteps = 50, mtd = ’ERK4’, gqFlag, gfFlag and gbFlag
set to false, gpFlag to true, marchP(v2,v,t) defined as -0.5*v2, will yield a
picture of the profiles. So we can see that the initial bell curve is smeared
out a bit and moving to the right.

Example 5. Let’s run a check on our Burger solution of the preceding
example by using a known solution as in Example 2. We’ll use D = 1/4, N
= 32, gL = 2π , T = 4, numProfiles = 5, numSteps = 50, mtd = ’ERK4’,
qFlag, fFlag and bFlag set to false, pFlag to true, marchP(v2,v,t) defined as
-0.5*v2, Our known solution is

u (x, t) = t sin (x)

which leads to rhs function

f (x, t) = sin (x)

(

1 +
1

4
t+ t2 cos (x)

)

.

The result is impressive: absolute errors on the order of 1e-14. So let’s try a
harmless looking variation:

u (x, t) = t cos (x)

which leads to rhs function

f (x, t) = cos (x)

(

1 +
1

4
t− t2 sin (x)

)

.

The result is equally impressive: errors on the order of 1e-14, which increases
confidence in the preceding example.

Example 6. Let’s try something else a bit different, namely a Fisher’s equa-
tion of the form

ut = Duxx + ru (1− u) , 0 < x < 6, 0 < t < 1

u(x, 0) = g(x), 0 ≤ x ≤ L.

u(0, t) = B(t), u(1, t) = B(t), t > 0.

Once again we will not enforce a boundary condition, nor do we have a
solution in hand. As with Burgers’ equation we impose the initial condition

u(x, 0) =
1

√
0.2 · 2π

e−(x−3)2/0.4



4

The resulting calculation using marchTest with D = 1/4, r = 1, N =
64, L = 6, T = 4, numProfiles = 5, numSteps = 50, mtd = ’ERK4’, and
using marchTest.m with pFlag, fFlag and bFlag set to false, qFlag to true,
marchQ(v2,v,t) defined as v - v2, fails. This is an interesting problem. Let’s
try to find a culprit. At one extreme, we can set D = 0 and essentially solve
an ode. Try it and we get a solution that is finite but definitely growing
and expanding. Now reset D = 1/4 but take N = 32. Surprise: we get a
reasonable solution which is growing fairly rapidly. Evidently more is not
always better (think CFL.)

Example 7. Let’s run a check on our Fisher solution of the preceding ex-
ample by using a known solution from Example 5. We’ll use D = 1/4, r = 1,
N = 32, L = 2π, T = 4, numProfiles = 5, numSteps = 50, mtd = ’ERK4’,
pFlag, fFlag and bFlag set to false, qFlag to true, marchQ(v2,v,t) defined
as v - v2, and the solution

u (x, t) = t sin (x) ,

which leads to rhs function

f (x, t) = sin (x)

(

t2 sin (x)−
3t

4
+ 1

)

.

We get pretty good results with errors in the order of 1e-7. Let’s improve it
a bit by increasing numSteps to 100. Doing so only decreases the error to
about 1e-8 – still pretty good.

Here’s a variation where our known solution is simple, but a little less trig
friendly:

u (x, t) = tx (2π − x)

which leads to rhs function

f (x, t) =
1

2

(

t+ 4π (1− t)x+
(

8π2t2 + 2t− 2
)

x2 − 8πt2x3 + 2t2x4
)

.

The result is not very good: relative infinity error of about 0.12. Try it with
numSteps = 100 and virtually no improvement. So let’s try this: replace the
first x by x2. This gives solution

u (x, t) = tx2 (2π − x)

and rhs function

f (x, t) =
1

2

(

−2πt+ 3tx+ 4π (1− t) x2 + 2 (t− 1) x3 + 8π2t2x4 − 8πt2x5 + 2t2x6
)

.

This time numSteps = 50 simply fails. However, there is a surprise at num-
Steps = 100: errors are better: relative infinity norm of about 0.07. And
yet doubling the number of steps gives virtually no improvement. For that
matter, the error norms are pretty dismal, in contrast to earlier examples
with larger step sizes. What’s going on here?

The fact that there was no improvement with decreased time step tells
us that space step dominates the error, so the only path to improvement is



5

a smaller space step and then much smaller time step. (Try it by doubling
space steps N and quadrupling time steps numSteps, and this time compare
both infinity and L2 norms of error. Something curious there as well.) Exam-
ination of the graphs strongly suggests that the problem is at the endpoints.
Now consider our first variation test function: if you assume it is periodic
and defined by its values in the interval [0, 2π], then it is certainly continuous
everywhere, but is not smooth at x = 0. Similarly, the second variation is
smooth everywhere, but not analytic (expandible in a power series at every
point, which implies infinitely many derivatives.) However, our first test
function is periodic and analytic. Moral: when using this spectral method,
approximating continuous solutions may be ok, but smooth solutions are
better and analytic solution are best.

Example 8. OK, now we move in a new direction with this example; specif-
ically, we are going to use this example to text variable step methods. We
would like something that puts stiff problems to the test. Let’s start with a
solution:

v(x) (t) = sin 2 (x) eλt = u(x, t).

As a definition of v(x) (t) think of this formula as defining functions of time
with x as a parameter, 0 ≤ x ≤ 2π, whereas as a definition of u (x, t) think of
the formula as defining a function of space x and time t. Then v(x) satisfies
the IVP

dv(x)
dt

= λv(x), t > 0,

v(x) (0) = sin2 (x) .

This is a parametrized family of the model problem v
′

= λv that is important
for determining the linear stability domain of various methods. Let’s turn
this problem into something a bit more relevant to the discussion of the
seminar, namely PDEs. We leave it to the reader to check that u (x, t)
satisfies the IVP-BVP problem

ut = Duxx + (λ+ 4D) u+ F (x, t) , t > 0, 0 < x < 2π,

u (x, 0) = sin2 (x) , 0 ≤ x ≤ 2π,

u (t, 0) = 0 = u (t, 2π) , t > 0,

where the forcing term is given by

F (x, t) = −2Deλt

and λ < 0, D > 0 are fixed parameters. The difficulties of the model problem
for linear stability domains is embedded as a family of such problems with
parameter x. Skeptical? Take D = 0 and see what you get. So the total
effect is that diffusion acts as a mitigating factor for the model problem.



6

Example 9. This example is a fairly complex Burgers equation that incor-
porates some features of the linear stability domain model. Let’s start with
the solution:

u (x, t) = sin (x) et cos(x), 0 ≤ x ≤ π, t ≥ 0.

Next the PDE in question, which we choose to be a viscid Burgers equation
with transport term added on

ut = Duxx − uux −G (x, t) u

where the time and space dependent coefficient is

G (x, t) = D + cos (x)
(

et cos(x) − 3Dt− 1
)

+ sin2 (x)
(

t2D − tet cos(x)
)

.

Amazingly, our solution satisfies this PDE along with initial/boundary con-
ditions

u (x, 0) = sin (x) , 0 ≤ x ≤ π,

u (0, t) = u (π, t) = 0, t > 0.

Example 10. Let’s put the solution of the previous example

u (x, t) = sin (x) et cos(x), 0 ≤ x ≤ π, t ≥ 0.

into a simpler diffusion equation with a transport term, namely

ut = Duxx + c (x, t)u

where the time and space dependent coefficient is

c (x, t) = cos (x) +D
(

1 + 3t cos (x)− t2 sin2 (x)
)

.

Our solution satisfies this PDE along with initial/boundary conditions

u (x, 0) = sin (x) , 0 ≤ x ≤ 2π

u (0, t) = u (π, t) = 0, t > 0.


