
Lecture 7 for Math 398 Section 952: Linear Algebra

Thomas Shores
Department of Math/Stat
University of Nebraska
Fall 2002

Most of the functions that we study in this lesson can be found in one category of the help files.
Start by issuing a “helpwin” command and clicking on “matlab/funfun”.

Linear Algebra

This is what Matlab was created for! So it should come as no surprise that Matlab has many
sophisticated functions for dealing with problems of linear algebra.

Matrix constructors and tools.

Matlab makes it easy to construct structured matrices. Get help and see. Here is a sampling. See
if you can guess the general pattern, then get help.

> c = (0:5)
> r =0:2:10
> T = toeplitz(c,r)
> fliplr(T)
> triu(T)
> tril(T)
> 5*eye(5)
> T + 5*eye(5)
vander(c)

Linear equations.

We will solve an interpolation problem. Suppose we are given a set of points x1 < x2 < ... <

x
n

and we want to find the coefficients of the polynomial of degree n − 1 that assumes values
y1, y2, ..., yn

at these points respectively. The vander command is perfect for this. So let’s construct
a polynomial approximating sin(2πx), 0 ≤ x ≤1. Here’s a simple routine (disclaimer: Matlab has
built-in functions to do this job; we’re just exploring linear algebra routines.)

> n = 5;
> x = linspace(0, 1, n)’;
> V = vander(x)
> y = sin(2*pi*x)
> p = V\y

1



> xnodes = linspace(0, 1, n^2);
> plot(xnodes,sin(2*pi*xnodes));
> hold on, grid
plot(xnodes, polyval(p,xnodes),’r’);
This seems nice. So let’s try to rev things up. Repeat all of the above after closing the window

and setting n = 100.

Eigenvalues and eigenvectors.

We will do a simple eigenvalue problem.
> [M,D] = eig(T)
> inv(M)*T*M
Now for a hard one. Get out your stopwatches:
> [M, D] = eig(V);

SVD and condition numbers.

Back to our problem with interpolation. The condition number is a matrix gives a measure of it’s
sensitivity to change, and hence how badly it might distort the solution, when we try to solve a
system with the matrix as a coefficient. Larger condition numbers are bad, and the smallest it can
be is 1. Try this

> cond(V)
> cond(T)
[U, S, V] = svd(T)
U’*T*V
S(1,1)/S(6,6)
cond(T)
End of Lesson

2


