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BACKGROUND AND MOTIVATION

One of the �rst population models one encoun-
ters is the Malthusian model

dP (t)

dt
= αP (t), t > 0,

where P (t) is the total population of an animal
under consideration and

α = β − µ

is a total growth rate consisting of birth rate
minus death rate. This model has the merit
of simplicity. But real populations are a good
deal more complex. A few key points:

• Juveniles (or eggs!) don't contribute to
the birth rate in the same way as adults.

• Mortality rates vary with age or perhaps
size.

• There are environmental limitations to growth.
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DERIVATION OF STRUCTURED MODEL

We re�ne our understanding of the population
by using a maturity variable z. Maturity could
be age, weight, etc. We assume

• Population is described by density function u(z, t)
in units of population per maturity size, say with
0 ≤ z ≤ z∗

• Maturation rate is governed by a nonnegative func-
tion g(z, t) in units of maturity size per unit time.

• Mortality rate µ(z, t) is maturity and (possibly) time
dependent in units of population per unit time.

• Birth rate β(z, t) is maturity and (possibly) time
dependent.

• We know the initial population distribution to be
u(z,0) = φ(z), 0 < z < z∗.
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Consider the time rate of change of the total
population ∫ b

a u(s, t) ds in an interval [a, b] with
0 < a < b < z∗. The �ow of population per
unit time across a maturity point x at time t
is g (x, t)u (x, t). The time rate of change of
the population in an interval is in�ow at left
minus out�ow at right plus growth/decay in
the interval. So a balance argument gives
d

dt

∫ b

a

u(s, t) ds = g(a, t)u(a, t)−g(b, t)u(b, t)−
∫ b

a

µ(s, t)u(s, t) ds.

Thus
∫ b

a

∂

∂t
u(s, t) ds = −

∫ b

a

(g(s, t)u(s, t))z ds−
∫ b

a

µ(s, t)u(s, t) ds

and
∫ b

a

{
∂

∂t
u(s, t) ds + (g(s, t)u(s, t))z + µ(s, t)u(s, t)

}
ds = 0.
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Assume the integrand is continuous and we
obtain from the fact that a, b are arbitrary that
the integrand is identically zero. Hence, there
results the classic structured population model

∂u

∂t
+

∂

∂x
(gu) = −µ(z, t)u, t > 0, 0 < z < z∗,

u(z,0) = φ(z), 0 < z < z∗
g(0, t)u(0, t) =

∫ z∗

0
β(s, t)u(s, t)ds, t > 0

Notice that the left boundary condition is non-
local.
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SPECIAL CASES

1. (Mc-Kendrick-von Foerster model) Matu-
rity variable is age. In this case, the growth
rate is g(z, t) = 1. A classic work by Nicholson
(1954) studied population dynamics of sheep
blow�y (Lucilia caprina) using what amounts
to an age structured model. The laboratory
results were very well approximated by mathe-
matical solutions to the model. Note: in this
case it isn't too di�cult to derive explicit so-
lutions to the model.

2. (Sinko-Streifer model) Maturity variable is
size. Here the growth rate g need not be con-
stant. Explicit solutions become a bit more
di�cult to obtain, but are possible in many
cases. This type of model has been used to
model many populations, e.g., aggregation of
phytoplankton (algae) in oceans by Ackleh and
Fitzpatrick (1996).
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3. (Phenological models) Here the maturity
variable is

z =
∫ t

0
R(θ(s)) ds

where θ = θ(t) is temperature at time t and R

is the development rate as a function of tem-
perature. In this case the growth rate is simply

g(t) =
dz

dt
= R (θ(t)) .

This model is particularly useful in the study of
insect populations such as grasshoppers, which
has a good deal of local interest.
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SOME PHILOSOPHY

What use do we make of these models? The
answer is two-fold (well, at least!)

• Qualitative Predictions. Without knowing
too much detail about the actual num-
bers we can ask questions like: will the
population grow, stabilize, fall to extinc-
tion, behave periodically or even chaoti-
cally? One can recast the structured mod-
els as delay di�erential equations or inte-
gral equations and do mathematical analy-
sis thereon. Monographs by Cushing, and
Gurney and Nisbit address these issues in
great detail and provide many interesting
case studies.
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• Literal Predictions. Here we want a real
live model that speci�cally makes veri�able
good predictions about a particular popula-
tion. Nicholson's blow�sh investigation is a
good example of this (as well as qualitative
prediction!) Ditto Ackleh and Fitzpatrick.

Each view has its own mathematical needs.
Both need ideas from the theory of partial and
ordinary di�erential equations. The qualita-
tive approach involves a good deal of classical
and functional analysis, as well as dynamical
systems. The literal approach requires more
numerical analysis and inverse theory (�here's
the answer, what's the question?�). Speci�-
cally, we might attempt to make reasonable
approximations to the parameters by way of
population measurements. The question be-
comes: what measurements are needed?
Example. One can show that if g is a con-
stant and µ = µ(z) is known, then β = β(z)
is uniquely determined by the measurements
u(0, t), 0 ≤ t ≤ 2/g.
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PREDATOR/PREY SYSTEMS

If the population we are studying is a food
source for another population, then these are
inextricably bound together, and we must ac-
count for both. The classical model here is
the famous Lotka-Volterra model for a total
population P (t) of predators and prey N(t)

dN

dt
= (r − αP )N

dP

dt
= (βN − δ)P.

But we already know the situation is a good
deal more complicated. Consider, e.g., grasshop-
per prey and spider predators. Adult grasshop-
pers have wings and are big. They are less
likely to be successfully attacked by a spider
than a wingless juvenile. Again, we see that
�maturity� is an important factor. So how do
we factor this into our model. There are nu-
merous lines of thought:
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1. Treat both populations as structured. For
example, M. Saleem studied egg-eating age-
structured predators in interaction with age-
structured prey. If u(z, t) is the prey density
and v(z, t) the predator density, then he obtains
ut + uz = −µu

vt + vz = −ηv

u(0, t) =
∫ ∞
0

β(s, t)u(s, t)ds− ku(0, t)
∫ ∞
0

v(s, t) ds,

v(0, t) =
∫ ∞
0

γ(s, t)u(s, t)ds

Now integrate these equations to obtain ordi-
nary di�erential equations for P (t) and N(t).

2. Accept the idea that the maturity param-
eter is di�erent for predator and prey. so we
arrive at a system like

ut + (gu)x = f(u, v, u(·, t), v(·, t))
vt + (hv)z = g(u, v, u(·, t), v(·, t))

u(0, t) =
∫ ∞
0

β(s, t)u(s, t)ds,

v(0, t) =
∫ ∞
0

γ(s, t)u(s, t)ds
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3. Assume that predators are su�ciently ho-
mogeneous that a structured distinction is un-
necessary. Gurtin and Levine (1980) used this
approach. Now we arrive at a coupled system
of PDE for prey density u(z, t) and ODE for
predator (total) population P (t)

ut + (gu)z = − (µ + h)u, 0 < z < z∗, t > 0

g(0, t)u(0, t) =

∫ z∗

0
β(s, t)u(s, t) ds,0, t ≥ 0

u(z,0) = φ(z), 0 ≤ z ≤ z∗

P ′(t) = f(t, u, P, u(·, t))
where f is a non-local function as is the �har-
vesting rate� h = h(z, t, u, u(·, t), P ).
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One example I'm currently experimenting with
is
f = min

{(
θ (G(t, F )− δ) + (1− θ) r

(
1− P

K

))
, σ

}
P

where θ is a �preference factor�, r a growth
rate, K a carrying capacity, δ a mortality rate
and σ a maximum growth rate. Here G is a
nonlocal term that determines the growth rate
of the predator population (excluding mortal-
ity.) Simple choices of G: G = cF for Lotka-
Volterra type responses, G = cF/ (Fh + F ) for
a Holling type II response function. We can
even add a time dependency to the Holling
term and obtain

G(t, F ) =
c(t)F

Fh + F
.

In this way, we can account for �uctuations in
growth of predator due to temperature varia-
tions.

NUMERICS

Very interesting stu�!!!
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