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Leslie Model (~1945)Population is divided into dis
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.

Here Fi is the per-
apita fertility of age 
lass i and Pj is thesurvival rate of age 
lass j . Clearly 0 ≤ Pj ≤ 1.Linearity or stationarity not required.Example: A =





0 e−bN 5e−bN
.3 0 00 0.5 0 

, where N = n1 + n2.
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ial 
lass of inverse problemsthat �nds parameters of a model, e.g., given many systemstates n (ti), �nd the proje
tion matrix. This is tougher.Thomas Shores Department of Mathemati
s University of NebraskaInverse Methods For Time Series
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A Generi
 ExamplePostulate s × s proje
tion matrix A for a stage stru
turedpopulation, together with data (possibly repli
ated and averaged)for the states n (1) ,n (2) , . . . ,n (s + 1). We have prior knowledgeof A: all entries are nonnegative and 
ertain entries are zero.Frame the problem as follows:An (k) = n (k + 1), k = 1, . . . , s.Set M = [n (1) ,n (2) , . . . ,n (s)] andP = [n (2) ,n (2) , . . . ,n (s + 1)].Re
ast problem as AM = P = IsAN.Tensor bookkeeping:ve
 (IsAM) =
(MT ⊗ Is) ve
 (A) = ve
 (P) ≡ d.Delete zero variables from ve
 (A) and 
olumns of MT ⊗ Is .Rename resulting ve
tors, matrix as m,G and rhs d. Systemtakes form Gm = d, with G p × q, typi
ally p > q.
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A Working ExampleTaken from Caswell's text, in turn from a referen
ed paper that I
an't �nd by Kaplan and Caswell-Chen: the sugarbeet nematodeHeterodera s
ha
htii has �ve stages (eggs, juvenile J2, J3, J4 andadult.) Following data is density of nematodes (per 60

 of soil) forstages J2, J3+J4, adult, averaged over four repli
ates, measuredevery two days:t = 0 t = 1 t = 2 t = 3 t = 4 t = 55.32 0.33 2.41 2.06 1.70 3.1624.84 18.16 17.14 3.25 2.08 11.23115.50 167.16 159.25 112.87 132.62 149.62This population leads to a population proje
tion matrixA =





P1 0 F3G1 P2G2 P3 





Basi
 Ideas and TheoryInverse ProblemsCon
lusions Formulation and ExamplesSome MethodologiesLeast Squares (?)

Thomas Shores Department of Mathemati
s University of NebraskaInverse Methods For Time Series



Basi
 Ideas and TheoryInverse ProblemsCon
lusions Formulation and ExamplesSome MethodologiesWhat we do:Of 
ourse, with mu
h data we will almost 
ertainly have anin
onsistent system Gm = d. The problem is therefore ill-posed.Re
ou
h the (probably) ill-posed problem Gm = d as theoptimization problem minm ‖Gm− d‖22 .This is equivalent to solving the normal equationsGTGm = GTdwhi
h, ASSUMING G has full 
olumn rank, has a uniquesolution m∗.Thomas Shores Department of Mathemati
s University of NebraskaInverse Methods For Time Series
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 Ideas and TheoryInverse ProblemsCon
lusions Formulation and ExamplesSome MethodologiesMore Least Squares:Least squares has many pleasant statisti
al properties, e.g., ifthe data errors are i.i.d. normal r.v.'s, then entries of m∗ arenormally distributed and E [m∗] = mtrue , whereGmtrue = dtrue .Given that the varian
e of data error is σ2, one 
an form the
hi-square statisti

χ2obs = ‖Gm− d‖22 /σ2and this turns out to be a r.v. with a χ2 distribution withm − n (row number of G minus 
olumn number) degrees offreedom.The probability of obtaining a χ2 value as large or larger thanthe observed number is the p-value p =

∫

∞

χ
2obs fχ2 (x) dx whi
his a uniformly distributed r.v.Thomas Shores Department of Mathemati
s University of NebraskaInverse Methods For Time Series
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 Ideas and TheoryInverse ProblemsCon
lusions Formulation and ExamplesSome MethodologiesWood's Quadrati
 Programming MethodWhy 
ast aspersions on least squares? Inter alia, the good featuresdon't apply: take a look at G . Moreover, it may result in negativeentries in the proje
tion matrix!Fix the Negativity:Re
ast the problem as 
onstrained optimization problem:minm ‖Gm− d‖22subje
t to 
onstraints Cm ≥ b where the 
onstaints ensure
onditions like m ≥ 0 and Pi + Gi ≤ 1.Solving a least squares problem only by adding 
onstraints isone kind of regularization strategy. Sometimes it works well,but there are examples where it's awful.Now let's run the s
ript WorkingExample.m.Thomas Shores Department of Mathemati
s University of NebraskaInverse Methods For Time Series
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 Ideas and TheoryInverse ProblemsCon
lusions Formulation and ExamplesSome MethodologiesSuppose that our problem had been severely poorly 
onditioned oreven rank de�
ient.What to do?Now even the problem minm ‖Gm− d‖22 gets us into trouble, withor without 
onstraints.Tikhonov regularization: add a regularizing term that makesthe problem well posed:min ‖Gm− d‖22 + α2 ‖L (m−m0)‖22 .Here α has to be 
hosen and L is a �smoothing� matrix likeL = I (zeroth order Tikhonov regularization) or matri
es whi
hmimi
 dis
retized �rst or se
ond derivatives (higher orderregularization. There's a Bayesian �avor here, esp. if m0 6= 0.)Note: statisti
ians are somewhat wary of this regularization asthat it introdu
es bias into model estimates.Thomas Shores Department of Mathemati
s University of NebraskaInverse Methods For Time Series



Basi
 Ideas and TheoryInverse ProblemsCon
lusions Formulation and ExamplesSome MethodologiesSuppose that our problem had been severely poorly 
onditioned oreven rank de�
ient.What to do?Now even the problem minm ‖Gm− d‖22 gets us into trouble, withor without 
onstraints.Tikhonov regularization: add a regularizing term that makesthe problem well posed:min ‖Gm− d‖22 + α2 ‖L (m−m0)‖22 .Here α has to be 
hosen and L is a �smoothing� matrix likeL = I (zeroth order Tikhonov regularization) or matri
es whi
hmimi
 dis
retized �rst or se
ond derivatives (higher orderregularization. There's a Bayesian �avor here, esp. if m0 6= 0.)Note: statisti
ians are somewhat wary of this regularization asthat it introdu
es bias into model estimates.Thomas Shores Department of Mathemati
s University of NebraskaInverse Methods For Time Series



Basi
 Ideas and TheoryInverse ProblemsCon
lusions Formulation and ExamplesSome MethodologiesSuppose that our problem had been severely poorly 
onditioned oreven rank de�
ient.What to do?Now even the problem minm ‖Gm− d‖22 gets us into trouble, withor without 
onstraints.Tikhonov regularization: add a regularizing term that makesthe problem well posed:min ‖Gm− d‖22 + α2 ‖L (m−m0)‖22 .Here α has to be 
hosen and L is a �smoothing� matrix likeL = I (zeroth order Tikhonov regularization) or matri
es whi
hmimi
 dis
retized �rst or se
ond derivatives (higher orderregularization. There's a Bayesian �avor here, esp. if m0 6= 0.)Note: statisti
ians are somewhat wary of this regularization asthat it introdu
es bias into model estimates.Thomas Shores Department of Mathemati
s University of NebraskaInverse Methods For Time Series



Basi
 Ideas and TheoryInverse ProblemsCon
lusions Formulation and ExamplesSome MethodologiesSuppose that our problem had been severely poorly 
onditioned oreven rank de�
ient.What to do?Now even the problem minm ‖Gm− d‖22 gets us into trouble, withor without 
onstraints.Tikhonov regularization: add a regularizing term that makesthe problem well posed:min ‖Gm− d‖22 + α2 ‖L (m−m0)‖22 .Here α has to be 
hosen and L is a �smoothing� matrix likeL = I (zeroth order Tikhonov regularization) or matri
es whi
hmimi
 dis
retized �rst or se
ond derivatives (higher orderregularization. There's a Bayesian �avor here, esp. if m0 6= 0.)Note: statisti
ians are somewhat wary of this regularization asthat it introdu
es bias into model estimates.Thomas Shores Department of Mathemati
s University of NebraskaInverse Methods For Time Series



Basi
 Ideas and TheoryInverse ProblemsCon
lusions Formulation and ExamplesSome MethodologiesDetermination of α

Thomas Shores Department of Mathemati
s University of NebraskaInverse Methods For Time Series



Basi
 Ideas and TheoryInverse ProblemsCon
lusions Formulation and ExamplesSome MethodologiesTo 
hoose an α:Some of the prin
ipal options:The L-
urve: do a loglog plot of ‖Gmα − d‖22 vs ‖Lmα‖
22 andlook for the α that gives a �
orner� value that balan
es thesetwo terms.(Morozov's dis
repan
y prin
iple) Choose α so that the mis�t

‖Gmα − d‖2 is the same size as the data noise ‖δd‖2GCV (
omes from statisti
al �leave-one-out� 
ross validation):Leave out one data point and use model to predi
t it. Sumthese up and 
hoose regularization parameter α that minimizesthe sum of the squares of the predi
tive errorsV0 (α) =
1m m

∑k=1 ((Gm[k]
α,L)k − dk)2

.Thomas Shores Department of Mathemati
s University of NebraskaInverse Methods For Time Series
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Other Regularization MethodsTotal least squares: this method attempts to a

ount for theerror in the 
oe�
ient matrix as well as right hand side. If
onstraints are not an issue, this method is preferable to leastsquares and has some good statisti
al properties morefavorable than ordinary least squares.Maximum likelihood approa
h: introdu
e a sto
hasti

omponent into the modeln (t + 1) = exp (D (t))An (t)where D (t) is a diagonal matrix with a multivariate normaldistribution of mean zero and 
ovarian
e matrix Σ. Let p bethe ve
tor of parameters to be estimated and use the observeddata to obtain maximum likelihood estimates of p and Σ.And, of 
ourse, there are in�nitely many other statisti
almethods for point estimates of individual parameters....
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Basi
 Ideas and TheoryInverse ProblemsCon
lusionsSummaryInverse problems arising from parameter re
overy in Lefkowitzmodels are ill posed, but 
an be managed by tools of inversetheory su
h as least squares, Tikhonov regularization and
onstrained optimization.There are some interesting data in the literature relating tofreshwater turtles that seem to exploit purely statisti
almethods. I plan to explore Lefkovit
h modeling in this 
ontext.Regularization tools may o�er new insights, parti
ularly inmodeling that leads to rank de�
ient problems.Spe
i�
ally, one might try to push the envelope with anon-stationary proje
tion matrix. Or nonlinear one. Or ta
kleunknown reprodu
tive rates. These will likely give problemswith worse 
onditioned that our working example.The role of total least squares seems to be largely unexploredfor these problems. This warrants further investigation.Thomas Shores Department of Mathemati
s University of NebraskaInverse Methods For Time Series
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