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A Motivating Example: Integral Equations

Contanimant Transport

Let C (x , t) be the concentration of a pollutant at point x in a

linear stream, time t, where 0 ≤ x < ∞ and 0 ≤ t ≤ T . The

de�ning model

∂C

∂t
= D

∂2C

∂x2
− v

∂C

∂x
C (0, t) = Cin (t)

C (x , t) → 0, x →∞
C (x , 0) = C0 (x)

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



Solution

Solution:

In the case that C0 (x) ≡ 0, the explicit solution is

C (x ,T ) =

∫ T

0

Cin (t) f (x ,T − t) dt,

where

f (x , τ) =
x

2
√

πDτ3
e−(x−vτ)2/(4Dτ)



The Inverse Problem

Problem:

Given simultaneous measurements at time T , to estimate the

contaminant in�ow history. That is, given data

di = C (xi ,T ) , i = 1, 2, . . . ,m,

to estimate

Cin (t) , 0 ≤ t ≤ T .



Some Methods

More generally

Problem:

Given the IFK

d (s) =

∫ b

a

g (x , s)m (x) dx

and a �nite sample of values d (si ), i = 1, 2, . . . ,m, to estimate

parameter m (x).
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Quadrature

Basic Ideas:

Approximate the integrals

di ≈ d(si ) =

∫ b

a

g (si , x)m (x) dx ≡
∫ b

a

gi (x)m (x) dx , i = 1, 2, . . . ,m

(where the representers or data kernels gi (x) = gi (si , x)) by

Selecting a set of collocation points xj , j = 1, 2, . . . , n. (It
might be wise to ensure n < m.)

Select an integration approximation method based on the

collocation points.

Use the integration approximations to obtain a linear system

Gm = d in terms of the unknowns mj ≡ m (xj),
j = 1, 2, . . . , n.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Representers

Rather than focusing on the value of m at individual points, take a

global view that m (x) lives in a function space which is spanned by

the representer functions g1 (x) , g2 (x) , . . . , gn (x) , . . .

Basic Ideas:

Make a selection of the basis functions

g1 (x) , g2 (x) , . . . , gn (x) to approximate m (x), say

m (x) ≈
n∑

j=1

αjgj (x)

Derive a system Γm = d with a Gramian coe�cient matrix

Γi ,j = 〈gi , gj〉 =

∫ b

a

gi (x) gj (x) dx

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Example

The Most Famous Gramian of Them All:

Suppose the basis functions turn out to be gi (x) = x i−1,

i = 1, 2, . . . ,m, on the interval [0, 1].

Exhibit the infamous Hilbert matrix.
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Other Choices of Trial Functions

Take a still more global view that m (x) lives in a function space

spanned by a spanning set which may not be the representers!

Basic Ideas:

Make a selection of the basis functions

h1 (x) , h2 (x) , . . . , hn (x) with linear span Hn (called �trial

functions� in the weighted residual literature) to approximate

m (x), say

m (x) ≈
n∑

j=1

αjhj (x)

Derive a system Gα = d with a coe�cient matrix

Gi ,j = 〈gi , hj〉 =

∫ b

a

gi (x) hj (x) dx

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Trial Functions

Orthogonal Idea:

An appealing choice of basis vectors is an orthonormal (o.n.) set of

nonzero vectors. If we do so:

‖m (x)‖ =
n∑

j=1

α2

j

ProjHn

(gi (x)) =
∑n

j=1
〈gi , hj〉 hj (x), i = 1, . . . ,m.

Meaning of ith equation:
〈
ProjHn

(gi ) ,m
〉

= di
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Backus-Gilbert Method

Problem: we want to estimate m (x) at a single point x̂ using the

available data, and do it well. How to proceed?

Basic Ideas:

Write m (x̂) ≈ m̂ =
∑m

j=1
cjdj and dj =

∫ b

a
gj (x)m (x) dx .

Reduce the integral conditions to m̂ =
∫ b

a
A (x)m (x) dx with

A (x) =
∑m

j=1
cjgj (x).

Ideally A (x) = δ (x − x̂). What's the next best thing?

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Backus-Gilbert Equations

Constraints on the averaging kernel A (x):

First, an area constraint: total area
∫ b

a
A (x) dx = 1. Set

qj =
∫ b

a
gj (x) dx and get qTc = 1.

Secondly, minimize second moment
∫ b

a
A (x)2 (x − x̂)2 dx .

This becomes a quadratic programming problem: objective

function quadratic and constraints linear.

In fact, it is convex, i.e., objective function matrix is positive

de�nite. We have a tool for solving this: quad_prog.m.

One could constrain the variance of the estimate m̂, say
m∑
i=1

c2i σ
2

i ≤ ∆, where σi is the known variance of di . This is a

more complicated optimization problem.
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A Case Study for the EPA

The Problem:

A factory on a river bank has recently been polluting a previously

unpolluted river with unaccepable levels of polychlorinated biphenyls

(PCBs). We have discovered a plume of PCB and want to estimate

its size to assess damage and �nes, as well as con�rm or deny

claims about the amounts by the company owning the factory.

We control measurements but have an upper bound on the

number of samples we can handle, that is, at most 100.

Measurements may be taken at di�erent times, but at most 20

per time at di�erent locales.

How would we design a testing procedure that accounts for

and reasonably estimates this pollution dumping using the

contaminant transport equation as our model?

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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contaminant transport equation as our model?

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



Chapter 3: Discretizing Continuous Inverse Problems
Chapter 4: Rank De�ciency and Ill-Conditioning

Properties of the SVD

Outline

1 Chapter 3: Discretizing Continuous Inverse Problems

Motivating Example

Quadrature Methods

Representer Method

Generalizations

Method of Backus and Gilbert

2 Chapter 4: Rank De�ciency and Ill-Conditioning

Properties of the SVD

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



Chapter 3: Discretizing Continuous Inverse Problems
Chapter 4: Rank De�ciency and Ill-Conditioning

Properties of the SVD

Basic Theory of SVD

Theorem

(Singular Value Decomposition) Let G be an m × n real matrix.

Then there exist m ×m orthogonal matrix U, n × n orthogonal

matrix V and m × n diagonal matrix S with diagonal entries

σ1 ≥ σ2 ≥ . . . ≥ σq, with q = min{m, n}, such that UTGV = S.

Moreover, numbers σ1, σ2, . . . , σq are uniquely determined by G.

De�nition

With notation as in the SVD Theorem, and Up, Vp the matrices

consisting of the �rst p columns of U, V , respectively, and Sp the

�rst p rows and columns of S , where σp is the last nonzero singular

value, then the Moore-Penrose pseudoinverse of G is

G † = VpS
−1

p UT
p ≡

p∑
j=1

1

σj
VjU

T
j .
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Matlab Knows It

Carry out these calculations in Matlab:

> n = 6

> G = hilb(n);

> svd(G)

>[U,S,V] = svd(G);

>U'*G*V - S

>[U,S,V] = svd(G,'econ');

> % try again with n=16 and then G=G(1:8)

> % what are the nonzero singular values of G?
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Applications of the SVD

Use notation above and recall that the null space and column space

(range) of matrix G are N (G ) = {x ∈ Rn |Gx = 0} and

R (G ) = {y ∈ Rm | y = Gx, x ∈ Rn} = span {G1,G2, . . . ,Gn}

Theorem

(1) rank (G ) = p and G =

p∑
j=1

σjUjV
T
j

(2)N (G ) = span {Vp+1,Vp+2, . . . ,Vn},R (G ) =
span {V1,V2, . . . ,Vp}
(3)N

(
GT

)
= span {Up+1,Up+2, . . . ,Um},R (G ) =

span {U1,U2, . . . ,Up}
(4) m† = G †d is a least squares solution to Gm = d of minimum

2-norm.
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