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Quality of Least Squares
A very nontrivial result which we assume:

Theorem

Let G have full column rank and m the least squares solution for

the scaled inverse problem. The statistic

‖dW − GWm‖22 =
m∑
i=1

(
di − (GmL2)i

)2
/σ2

i

in the random variable d has a chi-square distribution with

ν = m − n degrees of freedom.

This provided us with a statistical assessment (the chi-square test)

of the quality of our data. We need the idea of the p-value of the

test, the probability of obtaining a larger chi-square value than the

one actually obtained:

p =

∫ ∞

χ2
obs

fχ2 (x) dx .



Interpretation of p

As a random variable, the p-value is uniformly distributed between

zero and one. This can be very informative:

1 �Normal sized� p: we probably have an acceptable �t

2 Extremely small p: data is very unlikely, so model Gm = d

may be wrong or data may have larger errors than estimated.

3 Extremely large p (i.e., very close to 1): �t to model is almost

exact, which may be too good to be true.
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Uniform Distributions

Reason for uniform distribution:

Theorem

Let X have a continuous c.d.f. F (x) such that F (x)is strictly
increasing where 0 < x < 1. Then the r.v. Y = F (X ) is uniformly

distributed on the interval (0, 1)

Proof sketch:

Calculate P (Y ≤ y) using fact that F has an inverse function

F−1.

Use the fact that P (X ≤ x) = F (x) to prove that

P (Y ≤ y) = y .

Application: One can use this to generate random samples for X .
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An Example

Let's resume our experiment from above. Open the script

Lecture8.m and have a look. Then run Matlab on it and resume

calculations.

> % now set up for calculating the p-value of the test under both

scenarios.

>chiobs1 = norm(data - G*mapprox1)^2

>chiobs2 = norm(W*(data - G*mapprox2))^2

>help chis_pdf

>p1 = 1 - chis_cdf(chiobs1,m-n)

>p2 = 1 - chis_cdf(chiobs2,m-n)

% How do we interpret these results?

% Now put the bad estimate to the real test

How do we interpret these results?
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More Conceptual Tools

Examine and use the MVN theorems of ProbStatLectures to

compute the expectation and variance of the r.v. m, where m is

the modi�ed least squares solution, G has full column rank and d is

a vector of independent r.v.'s.

Each entry of m is a linear combination of independent

normally distributed variables, since

m =
(
GT
WGW

)−1
GT
WdW .

The weighted data dW = Wd has covariance matrix I .

Deduce that Cov (m) =
(
GT
WGW

)−1
.

Note simpli�cation if variances are constant:

Cov (m) = σ2 (
GTG

)−1
.
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Conceptual Tools

Next examine the mean of m and deduce from the facts that

E [dW ] = Wdtrue and GWmtrue = dtrue

and MVN facts that

E [m] = mtrue

Hence, modi�ed least squares solution is an unbiased

estimator of mtrue .

Hence we can construct a con�dence interval for our

experiment:

m± 1.96 · diag (Cov (m))1/2

What if the (constant) variance is unknown? Student's t to

the rescue!

How do we interpret these results?
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Outliers

These are discordant data, possibly due to other error or simply bad

luck. What to do?

Use statistical estimation to discard the outliers.

Use a di�erent norm from ‖·‖2. The 1-norm is an alternative,

but this makes matters much more complicated! Consider the

optimization problem

‖d− GmL2‖1 = min
m

‖d− Gm‖1

How do we interpret these results?
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A Motivating Example: Integral Equations

Contanimant Transport

Let C (x , t) be the concentration of a pollutant at point x in a

linear stream, time t, where 0 ≤ x < ∞ and 0 ≤ t ≤ T . The

de�ning model

∂C

∂t
= D

∂2C

∂x2
− v

∂C

∂x
C (0, t) = Cin (t)

C (x , t) → 0, x →∞
C (x , 0) = C0 (x)
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Solution

Solution:

C (x ,T ) =

∫ T

0
Cin (t) f (x ,T − t) dt,

where

f (x , τ) =
x

2
√

πDτ3
e−(x−vτ)2/(4Dτ)



The Inverse Problem

Problem:

Given simultaneous measurements at time T , to estimate the

contaminant in�ow history.



Some Methods

More generally

Problem:

Given the IFK

d (s) =

∫ b

a
g (x , s)m (x) dx

and a �nite sample of values d (si ), to estimate parameter m (x).

Methods we discuss at the board:

1 Quadrature

2 Representers

3 Orthogonal representers
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