Math 4/896: Seminar in Mathematics Topic: Inverse Theory

Instructor: Thomas Shores
Department of Mathematics

AvH 10

- C. Groetsch, Inverse Problems in the Mathematical Sciences, Vieweg-Verlag, Braunschweig, Wiesbaden, 1993. (A charmer!)
- M. Hanke and O. Scherzer, Inverse Problems Light: Numerical Differentiation, Amer. Math. Monthly, Vol 108 (2001), 512-521. (Entertaining and gets to the heart of the matter quickly)
- A. Kirsch, An Introduction to Mathematical Theory of Inverse Problems, Springer-Verlag, New York, 1996. (Harder! Definitely a graduate level text)
- A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 2004. (Very substantial introduction to inverse theory at the graduate level that emphasises statistical concepts.)
- R. Aster, B. Borchers, C. Thurber, Estimation and Inverse Problems, Elsivier, New York, 2005. (And the winner is...)

- C. Groetsch, Inverse Problems in the Mathematical Sciences, Vieweg-Verlag, Braunschweig, Wiesbaden, 1993. (A charmer!)
- M. Hanke and O. Scherzer, Inverse Problems Light: Numerical Differentiation, Amer. Math. Monthly, Vol 108 (2001), 512-521. (Entertaining and gets to the heart of the matter quickly)
- A. Kirsch, An Introduction to Mathematical Theory of Inverse Problems, Springer-Verlag, New York, 1996. (Harder! Definitely a graduate level text)
- A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 2004. (Very substantial introduction to inverse theory at the graduate level that emphasises statistical concepts.)
- R. Aster, B. Borchers, C. Thurber, Estimation and Inverse Problems, Elsivier, New York, 2005. (And the winner is...)

- C. Groetsch, Inverse Problems in the Mathematical Sciences, Vieweg-Verlag, Braunschweig, Wiesbaden, 1993. (A charmer!)
- M. Hanke and O. Scherzer, Inverse Problems Light: Numerical Differentiation, Amer. Math. Monthly, Vol 108 (2001), 512-521. (Entertaining and gets to the heart of the matter quickly)
- A. Kirsch, An Introduction to Mathematical Theory of Inverse Problems, Springer-Verlag, New York, 1996. (Harder! Definitely a graduate level text)
- A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 2004. (Very substantial introduction to inverse theory at the graduate level that emphasises statistical concepts.)
- R. Aster, B. Borchers, C. Thurber, Estimation and Inverse Problems, Elsivier, New York, 2005. (And the winner is...)

- C. Groetsch, Inverse Problems in the Mathematical Sciences, Vieweg-Verlag, Braunschweig, Wiesbaden, 1993. (A charmer!)
- M. Hanke and O. Scherzer, Inverse Problems Light: Numerical Differentiation, Amer. Math. Monthly, Vol 108 (2001), 512-521. (Entertaining and gets to the heart of the matter quickly)
- A. Kirsch, An Introduction to Mathematical Theory of Inverse Problems, Springer-Verlag, New York, 1996. (Harder! Definitely a graduate level text)
- A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 2004. (Very substantial introduction to inverse theory at the graduate level that emphasises statistical concepts.)
- R. Aster, B. Borchers, C. Thurber, Estimation and Inverse Problems, Elsivier, New York, 2005. (And the winner is...)

- C. Groetsch, Inverse Problems in the Mathematical Sciences, Vieweg-Verlag, Braunschweig, Wiesbaden, 1993. (A charmer!)
- M. Hanke and O. Scherzer, Inverse Problems Light: Numerical Differentiation, Amer. Math. Monthly, Vol 108 (2001), 512-521. (Entertaining and gets to the heart of the matter quickly)
- A. Kirsch, An Introduction to Mathematical Theory of Inverse Problems, Springer-Verlag, New York, 1996. (Harder! Definitely a graduate level text)
- A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 2004. (Very substantial introduction to inverse theory at the graduate level that emphasises statistical concepts.)
- R. Aster, B. Borchers, C. Thurber, Estimation and Inverse Problems, Elsivier, New York, 2005. (And the winner is...)

Outline

- 1 Chapter 3: Discretizing Continuous Inverse Problems
 - Motivating Example
 - Quadrature Methods
 - Representer Method
 - Generalizations
 - Method of Backus and Gilbert

Motivating Example Quadrature Methods Representer Method Generalizations Method of Backus and Gilbe

Outline

- 1 Chapter 3: Discretizing Continuous Inverse Problems
 - Motivating Example
 - Quadrature Methods
 - Representer Method
 - Generalizations
 - Method of Backus and Gilbert

A Motivating Example: Integral Equations

Contanimant Transport

Let C(x,t) be the concentration of a pollutant at point x in a linear stream, time t, where $0 \le x < \infty$ and $0 \le t \le T$. The defining model

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - v \frac{\partial C}{\partial x}$$

$$C(0,t) = C_{in}(t)$$

$$C(x,t) \to 0, x \to \infty$$

$$C(x,0) = C_0(x)$$

Solution:

$$C(x,T) = \int_0^T C_{in}(t) f(x,T-t) dt,$$

where

$$f(x,\tau) = \frac{x}{2\sqrt{\pi D\tau^3}} e^{-(x-v\tau)^2/(4D\tau)}$$

The Inverse Problem

Problem:

Given simultaneous measurements at time T, to estimate the contaminant inflow history. That is, given data

$$d_i = C(x_i, T), i = 1, 2, ..., m,$$

to estimate

$$C_{in}(t)$$
, $0 \le t \le T$.

More generally

Problem:

Given the IFK

$$d(s) = \int_a^b g(x, s) m(x) dx$$

and a finite sample of values $d(s_i)$, i = 1, 2, ..., m, to estimate parameter m(x).

- Quadrature
- 2 Representers
- Other Choices of Trial Functions

More generally

Problem:

Given the IFK

$$d(s) = \int_a^b g(x, s) m(x) dx$$

and a finite sample of values $d(s_i)$, i = 1, 2, ..., m, to estimate parameter m(x).

- Quadrature
- 2 Representers
- Other Choices of Trial Functions

More generally

Problem:

Given the IFK

$$d(s) = \int_{a}^{b} g(x, s) m(x) dx$$

and a finite sample of values $d(s_i)$, i = 1, 2, ..., m, to estimate parameter m(x).

- Quadrature
- 2 Representers
- Other Choices of Trial Functions

More generally

Problem:

Given the IFK

$$d(s) = \int_{a}^{b} g(x, s) m(x) dx$$

and a finite sample of values $d(s_i)$, i = 1, 2, ..., m, to estimate parameter m(x).

- Quadrature
- Representers
- Other Choices of Trial Functions

Motivating Example Quadrature Methods Representer Method Generalizations Method of Backus and Gilber

Outline

- Chapter 3: Discretizing Continuous Inverse Problems
 - Motivating Example
 - Quadrature Methods
 - Representer Method
 - Generalizations
 - Method of Backus and Gilbert

Basic Ideas:

Approximate the integrals

$$d_i \approx d(s_i) = \int_a^b g(s_i, x) m(x) dx \equiv \int_a^b g_i(x) m(x) dx, i = 1, 2, ..., m$$

- Selecting a set of collocation points x_j , j = 1, 2, ..., n. (It might be wise to ensure n < m.)
- Select an integration approximation method based on the collocation points.
- Use the integration approximations to obtain a linear system $G\mathbf{m} = \mathbf{d}$ in terms of the unknowns $m_j \equiv m(x_j)$, $j = 1, 2, \dots, n$.

Basic Ideas:

Approximate the integrals

$$d_i \approx d(s_i) = \int_a^b g(s_i, x) m(x) dx \equiv \int_a^b g_i(x) m(x) dx, i = 1, 2, ..., m$$

- Selecting a set of collocation points x_i , j = 1, 2, ..., n. (It might be wise to ensure n < m.)
- Select an integration approximation method based on the

Basic Ideas:

Approximate the integrals

$$d_i \approx d(s_i) = \int_a^b g(s_i, x) m(x) dx \equiv \int_a^b g_i(x) m(x) dx, i = 1, 2, ..., m$$

- Selecting a set of collocation points x_j , j = 1, 2, ..., n. (It might be wise to ensure n < m.)
- Select an integration approximation method based on the collocation points.
- Use the integration approximations to obtain a linear system $G\mathbf{m} = \mathbf{d}$ in terms of the unknowns $m_j \equiv m(x_j)$, $j = 1, 2, \dots, n$.

Basic Ideas:

Approximate the integrals

$$d_i \approx d(s_i) = \int_a^b g(s_i, x) m(x) dx \equiv \int_a^b g_i(x) m(x) dx, i = 1, 2, ..., m$$

- Selecting a set of collocation points x_j , j = 1, 2, ..., n. (It might be wise to ensure n < m.)
- Select an integration approximation method based on the collocation points.
- Use the integration approximations to obtain a linear system $G\mathbf{m} = \mathbf{d}$ in terms of the unknowns $m_j \equiv m(x_j)$, $j = 1, 2, \dots, n$.

Outline

- 1 Chapter 3: Discretizing Continuous Inverse Problems
 - Motivating Example
 - Quadrature Methods
 - Representer Method
 - Generalizations
 - Method of Backus and Gilbert

Representers

Rather than focusing on the value of m at individual points, take a global view that m(x) lives in a function space which is spanned by the **representer** functions $g_1(x), g_2(x), \ldots, g_n(x), \ldots$

Basic Ideas:

Make a selection of the basis functions $g_1(x), g_2(x), \dots, g_n(x)$ to approximate m(x), say

$$m(x) \approx \sum_{j=1}^{n} \alpha_{j} g_{j}(x)$$

ullet Derive a system $\Gamma m=d$ with a Gramian coefficient matrix

$$\Gamma_{i,j} = \langle g_i, g_j \rangle = \int_a^b g_i(x) g_j(x) dx$$

Representers

Rather than focusing on the value of m at individual points, take a global view that m(x) lives in a function space which is spanned by the **representer** functions $g_1(x), g_2(x), \ldots, g_n(x), \ldots$

Basic Ideas:

• Make a selection of the basis functions $g_1(x), g_2(x), \dots, g_n(x)$ to approximate m(x), say

$$m(x) \approx \sum_{j=1}^{n} \alpha_{j} g_{j}(x)$$

ullet Derive a system $\Gamma m=d$ with a Gramian coefficient matrix

$$\Gamma_{i,j} = \langle g_i, g_j \rangle = \int_a^b g_i(x) g_j(x) dx$$

Representers

Rather than focusing on the value of m at individual points, take a global view that m(x) lives in a function space which is spanned by the **representer** functions $g_1(x), g_2(x), \ldots, g_n(x), \ldots$

Basic Ideas:

• Make a selection of the basis functions $g_1(x), g_2(x), \ldots, g_n(x)$ to approximate m(x), say

$$m(x) \approx \sum_{j=1}^{n} \alpha_{j} g_{j}(x)$$

ullet Derive a system $\Gamma m=d$ with a Gramian coefficient matrix

$$\Gamma_{i,j} = \langle g_i, g_j \rangle = \int_a^b g_i(x) g_j(x) dx$$

Example

The Most Famous Gramian of Them All:

- Suppose the basis functions turn out to be $g_i(x) = x^{i-1}$, i = 1, 2, ..., m, on the interval [0, 1].
- Exhibit the infamous Hilbert matrix.

Example

The Most Famous Gramian of Them All:

- Suppose the basis functions turn out to be $g_i(x) = x^{i-1}$, i = 1, 2, ..., m, on the interval [0, 1].
- Exhibit the infamous Hilbert matrix.

Outline

- 1 Chapter 3: Discretizing Continuous Inverse Problems
 - Motivating Example
 - Quadrature Methods
 - Representer Method
 - Generalizations
 - Method of Backus and Gilbert

Other Choices of Trial Functions

Take a still more global view that m(x) lives in a function space which is spanned by a suitable spanning set, which might *not* be the representers!

Basic Ideas:

Make a selection of the basis functions $h_1(x), h_2(x), \dots, h_n(x)$ to approximate m(x), say

$$m(x) \approx \sum_{j=1}^{n} \alpha_{j} h_{j}(x)$$

ullet Derive a system $G \alpha = \mathbf{d}$ with a coefficient matrix

$$G_{i,j} = \langle g_i, h_j \rangle = \int_a^b g_i(x) h_j(x) dx$$

Other Choices of Trial Functions

Take a still more global view that m(x) lives in a function space which is spanned by a suitable spanning set, which might *not* be the representers!

Basic Ideas:

• Make a selection of the basis functions $h_1(x), h_2(x), \dots, h_n(x)$ to approximate m(x), say

$$m(x) \approx \sum_{j=1}^{n} \alpha_{j} h_{j}(x)$$

ullet Derive a system $G \alpha = \mathbf{d}$ with a coefficient matrix

$$G_{i,j} = \langle g_i, h_j \rangle = \int_a^b g_i(x) h_j(x) dx$$

Other Choices of Trial Functions

Take a still more global view that m(x) lives in a function space which is spanned by a suitable spanning set, which might *not* be the representers!

Basic Ideas:

• Make a selection of the basis functions $h_1(x), h_2(x), \dots, h_n(x)$ to approximate m(x), say

$$m(x) \approx \sum_{j=1}^{n} \alpha_{j} h_{j}(x)$$

ullet Derive a system $Glpha={f d}$ with a coefficient matrix

$$G_{i,j} = \langle g_i, h_j \rangle = \int_a^b g_i(x) h_j(x) dx$$

Outline

- 1 Chapter 3: Discretizing Continuous Inverse Problems
 - Motivating Example
 - Quadrature Methods
 - Representer Method
 - Generalizations
 - Method of Backus and Gilbert

Problem: we want to estimate m(x) at a single point \hat{x} using the available data, and do it well. How to proceed?

• Write
$$m(\widehat{x}) \approx \widehat{m} = \sum_{j=1}^{m} c_j d_j$$

- Reduce the integral conditions to $\widehat{m} = \int_a^b A(x) m(x) dx$
- Ideally $A(x) = \delta(x \hat{x})$. What's the next best thing? This leads to a quadratic programming problem.

Problem: we want to estimate m(x) at a single point \hat{x} using the available data, and do it well. How to proceed?

- Write $m(\widehat{x}) \approx \widehat{m} = \sum_{j=1}^{m} c_j d_j$
- Reduce the integral conditions to $\widehat{m} = \int_a^b A(x) m(x) dx$
- Ideally $A(x) = \delta(x \hat{x})$. What's the next best thing? This leads to a quadratic programming problem.

Problem: we want to estimate m(x) at a single point \hat{x} using the available data, and do it well. How to proceed?

- Write $m(\widehat{x}) \approx \widehat{m} = \sum_{j=1}^{m} c_j d_j$
- Reduce the integral conditions to $\widehat{m} = \int_a^b A(x) m(x) dx$
- Ideally $A(x) = \delta(x \hat{x})$. What's the next best thing? This leads to a quadratic programming problem.

Problem: we want to estimate m(x) at a single point \hat{x} using the available data, and do it well. How to proceed?

- Write $m(\widehat{x}) \approx \widehat{m} = \sum_{j=1}^{m} c_j d_j$
- Reduce the integral conditions to $\widehat{m} = \int_a^b A(x) m(x) dx$
- Ideally $A(x) = \delta(x \hat{x})$. What's the next best thing? This leads to a quadratic programming problem.