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Preliminaries

@ Let’s start with questions on Matlab and the Matlab tutorial,
with a brief overview of the part of the tutorial we did not
cover.

@ Save a copy of JDEP384hLecture3.pdf and
ProbStatLecture-384H.pdf to your local drives.

© Save copies of all m files in Week2 to your local drive.

© Open up the pdf files and fire up Matlab. Get help on
addpath and use it to put your m files in Matlab's path.

Credit and Thanks: The m files we're using today are found on
the outstanding site of James P. LeSage at
http://www.spatial-econometrics.com/
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Discrete Example

After viewing the probability discussion in ProbStatLecture:

Dart board experiment:

The dart board consists of six regions of equal area, and dart is
thrown without bias to any region.

Answer these questions:

© What is the probability of landing in any one region?

@ Suppose the experiment is repeated once. What is the
probability of the event of both darts landing in the same
region?
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Simulating an Experiment

Let's simulate the dart experiment and graph the results of our
experiments using Matlab. Type in

> N=36

> x = rand(N,1)*6;

> hist(x,0.5:5.5)

Now repeat with larger N.
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Uniform Distribution

After viewing the statistics discussion through expectation and
variance in ProbStatLecture:

Uniform distribution:

Let’s take the case of [a, b] = [0, 1].

Answer these questions:

© What does the graph of the p.d.f. look like?
@ How does simple calculus help us find the c.d.f.?

© Can we calulate the expectation and variance of the
distribution?

© Can we verify a simple property of expectation and variance
from definition?
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Normality and Central Limit Theorem

Normal distributions:

Let’s focus on the standard normal distribution

After viewing discussion of normal distributions and the Central
Limit Theorem, use addpath to point to the distribution files. Then

>x = -10:.1:10;

> help norm_cdf

> y = norm_cdf(x,0,1);
> plot(x,y)

> hold on

> help norm_pdf

> y = norm_pdf(x,0,1);

~nl Ao
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Common Distributions

After viewing the discussion of common distributions in
ProbStatLecture:

@ Do a simple plot of the normal distributions N (0, o),
o =0.5,1.0, 2.0, 3.0.

@ Confirm the approximation assertion about Poisson vs binomial
by calculating certain values or plotting.

© Get an idea of the shapes of non-normal distributions as one of
their parameters vary.

@ Confirm graphically the limiting assertion about the Student's
t distribution.
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Some Conceptual Calculations

After examining the subsection on on joint distributions: Dart
throws are independent of each other. X and Y are the location of
the dart on [0, 1].
Think about the following:

e What is the joint p.d.f. for these r.v.'s?

@ What is the liklihood of achieving a “score” at most 17

@ What is the expected value of the score?
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A Bivariate Normal Distribution

After examining the ProbStatLecture subsection on multivariate
normal distributions:

Asset evaluation (text, p.32):

Two assets have rates of return R; and R»that are random variables
with means 0.2 and 0.1, variances 0.2 and 0.4, respectively, and
covariance —0.1. A weighted portfolio had rate of return

R=wRi +wsR>.

Think about the following:

@ What is the expectation and variance of R?

o If Ry and Ry are jointly bivariate, what does the joint p.d.f.
look like?
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Generating Data

After examining the ProbStatLecture section on parameter
estimation:

Let’s generate data simulating the weighing of an object of weight
10. Assume the experiment is performed 16 times in independent
trials. We'll assume the error has a N (10,.0.01) distribution.

sigma = sqrt(0.01)

mu = 10

randn('state’,0)

data = sigma*randn(16,1)+mu;

We'll use this for the next three experiments.
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Estimation of Mean, Known Variance

Notation: Given a r.v. X and probability «, x, is the number such
that Fx (xa) = .

Since a c.d.f. is always monotone increasing, we expect that there
always is such a number x,, provided that Fx is continuous. In fact
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Estima

Key Theorem:

Let X1, Xo,..., X, bei.i.d. normal r.v.'s with mean p and variance
o2. Then the statistic -

_

~a/vn

has a standard normal distribution.

Z




tion of Mean, Known Variance

A calculation based on this fact shows:

Confidence interval for 1, o known, confidence coefficient a:

_ o _ o
X +Z(1—a)/2ﬁ <p<X- Z(l—a)/2%‘

Here we are using the fact that the standard normal distribution is

symmetric about the origin, so that z(114)/2 = —Z(1-q)/2- Now use
this fact on our data to construct a confidence interval for the true
weight of the object. The function stdn_inv is helpful here.
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Estimation of Mean, Unknown Variance

Sampling Theorem:

Let X1, Xo,..., X, bei.i.d. normal r.v.'s with mean p and variance
o2. Then the statistic _

_X-p

~S/\/n

has a Student's t distribution with n — 1 degrees of freedom.

T
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Estimation of Mean, Unknown Variance

A calculation based on this fact shows:

Confidence interval for i, o known, confidence coefficient p :

_ s _ s
X+ t(lfa)/2ﬁ <p<X—= t(lfa)/2ﬁ

where T is the Student’s t distribution with n — 1 degrees of
freedom.

Here we are using the fact that the t distribution is symmetric
about the origin, so that t(144)/2 = —t(1—a)/2. Now use this fact
on our data to construct a confidence interval for the true weight of
the object. The function tdis_inv is helpful here.
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Estimation of Variance

Key Theorem:

Let X1, Xo,..., X, bei.i.d. normal r.v.'s with mean p and variance
02. Then the statistic

52
2

Y:(n—l)a

has a chi-square distribution with n — 1 degrees of freedom.
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Estimation of Mean, Unknown Variance

A calculation based on this fact shows:

Confidence interval for o , confidence coefficient «:

(n—1)s? , (n—1)s?
<ot <

2
X(1+a)/2 X(1-a)/2

where x? is the chi-square distribution with n — 1 degrees of
freedom.

The chi-square distribution is NOT symmetric, whence the form
above. Now use this fact on our data to construct a confidence
interval for the true weight of the object. The function chis_inv is
helpful here.
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