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Basic Problems

Root Finding:

Solve the system of equations represented in vector form as

F (x) = 0.

for point(s) x∗ for which F (x∗) = 0.

Here F (x) = (f1 (x) , . . . , fm (x)) and x = (x1, . . . , xm)

Gradient notation: ∇fj (x) =

(
∂fj
∂x1

(x) , . . . ,
∂fj
∂xm

(x)

)
.

Jacobian notation:

∇F (x) = [∇f1 (x) , . . . ,∇fm (x)]T =

[
∂fi
∂xj

]
i ,j=1,...m

.
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Basic Problems

Optimization:

Find the minimum value of scalar valued function f (x), where x
ranges over a feasible set Ω.

Set F (x) = ∇f (x) =

(
∂f

∂x1
(x) , . . . ,

∂f

∂xm
(x)

)
Hessian of f : ∇ (∇f (x)) ≡ ∇2f (x) =

[
∂2f

∂xi∂xj

]
.
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Taylor Theorems

First Order

Suppose that f : Rn → R has continuous second partials and
x∗, x ∈ Rn. Then

f (x) = f (x∗) +∇f (x∗)T (x− x∗) +O
(
‖x− x∗‖2

)
, x→ x.

Second Order

Suppose that f : Rn → R has continuous third partials and
x∗, x ∈ Rn. Then f (x) = f (x∗) +∇f (x∗)T (x− x∗) +
1

2
(x− x∗)T ∇2f (x∗) (x− x∗) +O

(
‖x− x∗‖3

)
, x→ x.

(See Appendix C for versions of Taylor's theorem with weaker
hypotheses.)

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Newton Algorithms

Root Finding

Input F, ∇F, x0, Nmax

for k = 0, ...,Nmax

xk+1 = xk −∇F
(
xk

)−1
F

(
xk

)
if xk+1, xk pass a convergence test
return(xk)

end
end
return(xNmax )
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Convergence Result

Theorem

Let x∗ be a root of the equation F (x) = 0, where F, x are

m-vectors, F has continuous �rst partials in some neighborhood of

x∗ and ∇F (x∗) is non-singular. Then Newton's method yields a

sequence of vectors that converges to x∗, provided that x0 is

su�ciently close to x∗. If, in addition, F has continuous second

partials in some neighborhood of x∗, then the convergence is

quadratic in the sense that for some constant K > 0,∥∥∥xk+1 − x∗
∥∥∥ ≤ K

∥∥∥xk − x∗
∥∥∥2 .
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Newton for Optimization

Bright Idea:

We know from calculus that where f (x) has a local minimum,
∇f = 0. So just let F (x) = ∇f (x) and use Newton's method.

Result is iteration formula: xk+1 = xk −∇2f
(
xk

)−1∇f
(
xk

)
We can turn this approach on its head: root �nding is just a
special case of optimization, i.e., solving F (x) = 0 is the same
as minimizing f (x) = ‖F (x)‖2.
Downside of root �nding point of view of optimization: saddle
points and local maxima x also satisfy ∇f (x) = 0.

Upside of optimization view of root �nding: if F (x) = 0

doesn't have a root, minimizing f (x) = ‖F (x)‖2 �nds the
next best solutions � least squares solutions!

In fact, least squares problem for‖Gm− d‖2 is optimization!

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Remarks on Newton

About Newton:

This barely scratches the surface of optimization theory (take Math
4/833 if you can!!).

Far from a zero, Newton does not exhibit quadratic
convergence. It is accelerated by a line search in the Newton

direction −∇F
(
xk

)−1
F

(
xk

)
for a point that (approximately)

minimizes a merit function like m (x) = ‖F (x)‖2.
Optimization is NOT a special case of root �nding. There are
special characteristics of the min f (x) problem that get lost if
one only tries to �nd a zero of ∇f .

For example, −∇f is a search direction that leads to the
method of steepest descent. This is not terribly e�cient, but
well understood.

There is an automatic merit function, namely f (x), in any
search direction. Using this helps avoid saddle points, maxima.
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Gauss-Newton and Levenberg-Marquardt

The Problem:

Given a function F (x) = (f1 (x) , . . . , fm (x)), minimize

f (x) =
m∑

k=0

fk (x)2 = ‖F (x)‖2.

Newton's method can be very expensive, due to derivative
evaluations.

For starters, one shows ∇f (x) = 2 (∇F (x))T F (x)

Then, ∇2f (x) = 2 (∇F (x))T ∇F (x) + Q (x), where
Q (x) =

∑m
k=1 fk (x)∇2fk (x) contains all the second

derivatives.
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The Problem:

Given a function F (x) = (f1 (x) , . . . , fm (x)), minimize

f (x) =
m∑

k=0

fk (x)2 = ‖F (x)‖2.

This inspires a so-called quasi-Newton method, which
approximates the Hessian as ∇2f (x) ≈ 2 (∇F (x))T ∇F (x) .

Thus, Newton's method morphs into the Gauss-Newton (GN)
method

xk+1 = xk−
((
∇F

(
xk

))T

∇F
(
xk

))−1 (
∇F

(
xk

))T

F
(
xk

)
There's a problem here. See it?
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The Problem:

∇F (x) may not have full column rank.

A remedy: regularize the Newton problem to((
∇F

(
xk

))T

∇F
(
xk

)
+ λk I

)
p = −

(
∇F

(
xk

))T

F
(
xk

)
with λ suitably chosen positive number for p = x− xk

In fact, Lagrange multipliers show we are really solving a
constrained problem of minimizing∥∥∥∇F(

xk
)
p + F

(
xk

)∥∥∥2subject to a constraint ‖p‖ ≤ δk . Of

course, δk determines λk and vice-versa.

The idea is to choose λk at each step: Increase it if the
reduction in f (x) was not as good as expected, and decrease
it if the reduction was better than expected. Otherwise, leave
it alone.
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reduction in f (x) was not as good as expected, and decrease
it if the reduction was better than expected. Otherwise, leave
it alone.
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GN with its favorable convergence rate.

For large λk , LM becomes approximately

p = − 1
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, which is a steepest-descent

step, slow but convergent.
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F
(
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step, slow but convergent.

For small residuals, LM (and GN, when stable) converge
superlinearly. They tend to perform poorly on large residual
problems, where the dropped Hessian terms are signi�cant.
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Another Perspective on LM:

NB: λk is not a regularizaton parameter in usual sense, but
rather a tool for e�ciently solving a nonlinear system which
itself may or may not be regularized.

However: suppose our objective is to �nd a least squares
solution to the problem F (x) = d, given output data d with

error, in the form of dδ, i.e., to minimize
∥∥F (x)− dδ

∥∥2.
In this case, LM amounts to cycles of these three steps:

Forward-solve: compute dk = F
(
xk

)
.

Linearize: ∇F
(
xk

) (
xk+1 − xk

)
= dδ − dk .

Regularize:

((
∇F

(
xk

))T

∇F
(
xk

)
+ αk I

)
p =(

∇F
(
xk

))T (
dδ − dk

)
This is a regularization technique for nonlinear problems and is
called output least squares.
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Statistics

Problem is G (m) = d with least squares solution m∗ :

Now what? What statistics can we bring to bear on the problem?

We minimize ‖F (m)‖2 =
n∑

i=1

(G (m)− di )
2

σ2
i

Treat the linear model as locally accurate, so mis�t is
∇F = F (m + ∆m)− F (m∗) ≈ ∇F (m∗)∇m
Obtain covariance matrix

Cov (m∗) =
(
∇F (m∗)T ∇F (m∗)

)−1
If σ is unknown but constant across measurements, take

σi = 1 above and use for σ in 1
σ2

(
∇F (m∗)T ∇F (m∗)

)−1
the

estimate

s2 =
1

m − n

m∑
i=1

(G (m)− di )
2 .

Do con�dence intervals, χ2 statistic and p-value as in Chapter
2.
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Implementation Issues

What could go wrong?

Problem may have many local minima.

Even if it has a unique solution, it might lie in a long �at basin.

Analytical derivatives may not be available. This presents an
interesting regularization issue not discussed by the authors.
We do so at the board.

One remedy for �rst problem: use many starting points and
statistics to choose best local minimum.

One remedy for second problem: use a better technique than
GN or LM.

Do Example 9.2 from the CD to illustrate some of these ideas.

If time permits, do data �ting from Great Britian population
data.
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