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Chapter 6: Iterative Methods — A Brief Discussion

Image Recovery

Problem:

An image is blurred and we want to sharpen it. Let intensity
function liye (x, y)define the true image and lpjypreq (x,y) define
the blurred image.
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Chapter 6: Iterative Methods — A Brief Discussion

Image Recovery

Problem:
An image is blurred and we want to sharpen it. Let intensity
function liye (x, y)define the true image and lpjypreq (x,y) define
the blurred image.
@ A typical model results from convolving true image with
Gaussian point spread function

(0.0) o
Ibturred (X, y) = / / ltrue (x — uyy — v) WV (u,v) dudv
—00 —00

where W (u,v) = e~ (+v?)/(20%)
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Chapter 6: Iterative Methods — A Brief Discussion

Image Recovery

Problem:
An image is blurred and we want to sharpen it. Let intensity
function liye (x, y)define the true image and lpjypreq (x,y) define
the blurred image.
@ A typical model results from convolving true image with
Gaussian point spread function

(0.0) o
Ibturred (X, y) = / / ltrue (x — uyy — v) WV (u,v) dudv
—00 —00

where W (u,v) = e~ (+v?)/(20%)
@ Think about discretizing this over an SVGA image
(1024 x 768).
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Chapter 6: Iterative Methods — A Brief Discussion

Image Recovery

Problem:
An image is blurred and we want to sharpen it. Let intensity
function liye (x, y)define the true image and lpjypreq (x,y) define
the blurred image.
@ A typical model results from convolving true image with
Gaussian point spread function

(0.0) o
Ibturred (X, y) = / / ltrue (x — uyy — v) WV (u,v) dudv
—00 —00

where W (u,v) = e~ (+v?)/(20%)

@ Think about discretizing this over an SVGA image
(1024 x 768).

@ But the discretized matrix should be sparse!
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Chapter 6: Iterative Methods — A Brief Discussion

Sparse Matrices and Iterative Methods

Sparse Matrix:

A matrix with sufficiently many zeros that we should pay attention
to them.
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Sparse Matrix:

A matrix with sufficiently many zeros that we should pay attention
to them.

@ There are efficient ways of storing such matrices and doing
linear algebra on them.
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Chapter 6: Iterative Methods — A Brief Discussion

Sparse Matrices and Iterative Methods

Sparse Matrix:

A matrix with sufficiently many zeros that we should pay attention
to them.

@ There are efficient ways of storing such matrices and doing
linear algebra on them.

@ Given a problem Ax = b with A sparse, iterative methods
become attractive because they usually only require storage of
A, x and some auxillary vectors, and saxpy, gaxpy, dot

algorithms — (“scalar a*x+y" , “general A*x+y", “dot product”)
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Chapter 6: Iterative Methods — A Brief Discussion

Sparse Matrices and Iterative Methods

Sparse Matrix:

A matrix with sufficiently many zeros that we should pay attention
to them.
@ There are efficient ways of storing such matrices and doing
linear algebra on them.
@ Given a problem Ax = b with A sparse, iterative methods
become attractive because they usually only require storage of
A, x and some auxillary vectors, and saxpy, gaxpy, dot
algorithms — (“scalar a*x+y" , “general A*x+y", “dot product”)
@ Classical methods: Jacobi, Gauss-Seidel, Gauss-Seidel SOR
and conjugate gradient.
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Chapter 6: Iterative Methods — A Brief Discussion

Sparse Matrices and Iterative Methods

Sparse Matrix:

A matrix with sufficiently many zeros that we should pay attention
to them.

@ There are efficient ways of storing such matrices and doing
linear algebra on them.

@ Given a problem Ax = b with A sparse, iterative methods
become attractive because they usually only require storage of
A, x and some auxillary vectors, and saxpy, gaxpy, dot
algorithms — (“scalar a*x+y" , “general A*x+y", “dot product”)

@ Classical methods: Jacobi, Gauss-Seidel, Gauss-Seidel SOR
and conjugate gradient.

@ Methods especially useful for tomographic problems:
Kaczmarz's method, ART (algebraic reconstruction technique).
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Chapter 6: Iterative Methods — A Brief Discussion

Yet Another Regularization |dea

To regularize in face of iteration:

Use the number of iteration steps taken as a regularization
parameter.

Do Example 6.3 from the CD. Change startupfile path to

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse The




Chapter 6: Iterative Methods — A Brief Discussion

Yet Another Regularization |dea

To regularize in face of iteration:

Use the number of iteration steps taken as a regularization
parameter.

o Conjugate gradient methods are designed to work with SPD
coefficient matrices A in the equation Ax = b.

Do Example 6.3 from the CD. Change startupfile path to

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse The




Chapter 6: Iterative Methods — A Brief Discussion

Yet Another Regularization |dea

To regularize in face of iteration:

Use the number of iteration steps taken as a regularization
parameter.
o Conjugate gradient methods are designed to work with SPD
coefficient matrices A in the equation Ax = b.
@ So in the unregularized least squares problem GTGm = G'd
take A= G’ G and b = G'd, resulting in the CGLS method,
in which we avoid explicitly computing G G.

Do Example 6.3 from the CD. Change startupfile path to
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Chapter 6: Iterative Methods — A Brief Discussion

Yet Another Regularization |dea

To regularize in face of iteration:

Use the number of iteration steps taken as a regularization
parameter.

o Conjugate gradient methods are designed to work with SPD
coefficient matrices A in the equation Ax = b.

@ So in the unregularized least squares problem GTGm = G'd
take A= G’ G and b = G'd, resulting in the CGLS method,
in which we avoid explicitly computing G G.

@ Key fact: in exact arithmetic, if we start at m©) = 0, then
Hm(k)H is monotone increasing in k and HGm(k) — d|| is
monotonically decreasing in k. So we can make an L-curve in
terms of k.

Do Example 6.3 from the CD. Change startupfile path to
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Chapter 7: Additional Regularization Techniques Maximum Entropy Regularization
Total Variation
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Total Variation

Regularization...Sort Of

Use prior knowledge about the nature of the solution to restrict it:
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2: Maximum Entropy Regularization

Chapter 7: Additional Regularization Techniques 2
7.3: Total Variation

Regularization...Sort Of

Use prior knowledge about the nature of the solution to restrict it:

@ Most common restrictions: on the magnitude of the parameter
values. Which leads to the problem:
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.2: Maximum Entropy Regularization
7.3: Total Variation

Chapter 7: Additional Regularization Techniques

Regularization...Sort Of

Use prior knowledge about the nature of the solution to restrict it:
@ Most common restrictions: on the magnitude of the parameter
values. Which leads to the problem:
e Minimize f (m)
subject to / < m < w.
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Chapter 7: Additional Regularization Techniques

Regularization...Sort Of

Use prior knowledge about the nature of the solution to restrict it:

@ Most common restrictions: on the magnitude of the parameter
values. Which leads to the problem:

e Minimize f (m)
subject to / < m < w.

@ One could choose f (m) = ||Gm —d||,(BVLS)
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.1: Using Bounds as Constraints
2: Maximum Entropy Regularization
7.3: Total Variation

Chapter 7: Additional Regularization Techniques

Regularization...Sort Of

Use prior knowledge about the nature of the solution to restrict it:

@ Most common restrictions: on the magnitude of the parameter
values. Which leads to the problem:

e Minimize f (m)
subject to / < m < w.

@ One could choose f (m) = ||Gm —d||,(BVLS)

T

@ One could choose f (m) = c' - mwith additional constraint

|Gm —dl, < 5.
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Example 3.3

Contaminant Transport

Let C(x, t) be the concentration of a pollutant at point x in a
linear stream, time t, where 0 < x <ocoand 0 <t < T. The
defining model

oc _ pPCac
ot axz "V ox
C(O, t) = GCp (t)
C(x,t) — 0, x— o0

C(X,O) = Co (X)




Solution

In the case that Gy (x) = 0, the explicit solution is

i
C (. T):/ Con (8) F (x, T — ) dt,
0
where

f (X, 7_) _ Le—(X—VT)Z/(“DT)

2V nD73




Inverse Problem

Problem:

Given simultaneous measurements at time T, to estimate the
contaminant inflow history. That is, given data

d=C(xi,T),i=1,2,...,m,

to estimate

Cn(t),0<t<T.

Change the startupfile path to Examples/chap7/exampl execute it
and examp.



Chapter 7: Additional Regularization Techniques .2: Maximum Entropy Regularization
3: Total Variation
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h 7.1: Using Bounds as Constraints
Chapter 7: Additional Regularization Techniques 7.2: Maximum Entropy Regularization
t 7.3: Total Variation

A Better Idea (7)

n
E(m)=— Z mj In (wjm;), w a vector of positive weights.
j=1
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t 7.3: Total Variation

A Better Idea (7)

n
E(m)=— Z mj In (wjm;), w a vector of positive weights.
j=1
@ Motivated by Shannon’s information theory and Bolzmann’s
theory of entropy in statistical mechanics. A measure of
uncertainty about which message or physical state will occur.
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Chapter 7: Additional Regularization Techniques
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A Better Idea (7)

n
E(m)=— Z mj In (wjm;), w a vector of positive weights.
j=1
@ Motivated by Shannon’s information theory and Bolzmann’s
theory of entropy in statistical mechanics. A measure of
uncertainty about which message or physical state will occur.

@ Shannon's entropy function for a probability distribution

{pl},_l is H(p Zpl In (pi)-
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h 7.1: Using Bounds as Constraints
Chapter 7: Additional Regularization Techniques 7.2: Maximum Entropy Regularization
t 7.3: Total Variation

A Better Idea (7)

E(m)=— Z mj In (wjm;), w a vector of positive weights.
j=1
@ Motivated by Shannon’s information theory and Bolzmann’s
theory of entropy in statistical mechanics. A measure of
uncertainty about which message or physical state will occur.

@ Shannon's entropy function for a probability distribution
{pl},_l is H(p Zpl In (pi)-

@ Bayesian MaX|m|mum Entropy Principle: least biased model is
one that maximizes entropy subject to constraints of testable
information like bounds or average values of parameters.
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Maximum Entropy Regularization

Maximize Entropy:

That is, our version. So problem looks like:

Change the startupfile path to Examples/chap7/examp2 execute it
and examp.
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e Maximize — Z mj In (wjm;)
j=1
@ Subject to |[Gm —d||, < and m > 0.

Change the startupfile path to Examples/chap7/examp2 execute it
and examp.
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e Maximize — Z mj In (wjm;)
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e Maximize — Z mj In (wjm;)
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Maximum Entropy Regularization

Maximize Entropy:

That is, our version. So problem looks like:
n

e Maximize — Z mj In (wjm;)
j=1
@ Subject to |[Gm —d||, < and m > 0.
@ In absence of extra information, take w; = 1. Lagrange
multipliers give:

n
o Minimize |Gm —d|j3 + o2 Z mj In (w;m;),
=1

@ subject to m > 0.

Change the startupfile path to Examples/chap7/examp2 execute it
and examp.
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7.1: Using Bounds as Constraints
Chapter 7: Additional Regularization Techniques 7.2: Maximum Entropy Regularization
t 7.3: Total Variation

TV Regularization

We only consider total variation regularization from this section.

Regularization term:

n—1

DV (m) = Z |mj11 — mj| = ||[Lm]||;, where L is the matrix used in
j=1

first order Tikhonov regularization.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse The



7.1: Using Bounds as Constraints
Chapter 7: Additional Regularization Techniques 7.2: Maximum Entropy Regularization
t 7.3: Total Variation

TV Regularization

We only consider total variation regularization from this section.

Regularization term:

n—1

DV (m) = Z |mj11 — mj| = ||[Lm]||;, where L is the matrix used in
j=1

first order Tikhonov regularization.
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7.1: Using Bounds as Constraints
Chapter 7: Additional Regularization Techniques 7.2: Maximum Entropy Regularization
t 7.3: Total Variation

TV Regularization

We only consider total variation regularization from this section.

Regularization term:

n—1
DV (m) = Z |mj11 — mj| = ||[Lm]||;, where L is the matrix used in
Jj=1
first order Tikhonov regularization.
@ Problem becomes: minimize ||Gm — d||§ + am|;

o Better yet: minimize ||Gm —d||; + o ||m][;.
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7.1: Using Bounds as Constraints
Chapter 7: Additional Regularization Techniques 7 Maximum Entropy Regularization

7:3: Total Variation

TV Regularization

We only consider total variation regularization from this section.
Regularization term:
n—1

Z |mj11 — mj| = ||[Lm]||;, where L is the matrix used in
j=1
first order Tikhonov regularization.

DV (m) =

@ Problem becomes: minimize ||Gm — d||§ + am|;
o Better yet: minimize ||Gm —d||; + o ||m][;.

Lo Jm=[5]

e Equivalently: minimize

1
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7.3: Total Variation

Chapter 7: Additional Regularization Techniques

TV Regularization

We only consider total variation regularization from this section.
Regularization term:

n—1
DV (m) = Z |mj11 — mj| = ||[Lm]||;, where L is the matrix used in
Jj=1
first order Tikhonov regularization.
@ Problem becomes: minimize ||Gm — d||§ + am|;

o Better yet: minimize ||Gm —d||; + o ||m][;.

Lo Jm= L5l

@ Now just use IRLS (iteratively reweighted least squares) to
solve it and an L-curve of sorts to find optimal a.

e Equivalently: minimize
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TV Regularization

We only consider total variation regularization from this section.
Regularization term:

n—1
DV (m) = Z |mj11 — mj| = ||[Lm]||;, where L is the matrix used in
Jj=1
first order Tikhonov regularization.
@ Problem becomes: minimize ||Gm — d||§ + am|;

o Better yet: minimize ||Gm —d||; + o ||m][;.

Lo Jm= L5l

@ Now just use IRLS (iteratively reweighted least squares) to
solve it and an L-curve of sorts to find optimal a.

e Equivalently: minimize
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Bounds as Constraints
mum Entropy Regularization

Chapter 7: Additional Regularization Techniques 8
.3: Total Variation

7.
7.2: N
7

Total Variation

Key Property:

Change startupfile path to Examples/chap7/examp3 execute it and
examp.

omas Shores Department of Mathematics
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Bounds as Constraints
Chapter 7: Additional Regularization Techniques 7 V mum Entropy Regularization
7 3: Total Variation

Total Variation

Key Property:

@ TV doesn’t smooth discontinuities as much as Tikhonov
regularization.

Change startupfile path to Examples/chap7/examp3 execute it and
examp.
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Newton's Method
Gauss-Newton and Levenberg-Marquardt Methods

Chapter 9: Nonlinear Regression
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Newton's Method
Gauss-Newton and Levenberg-Marquardt Methods

Chapter 9: Nonlinear Regression

Basic Problems

Root Finding:

Solve the system of equations represented in vector form as

for point(s) x* for which F (x*) = 0.
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Chapter 9: Nonlinear Regression

Basic Problems

Root Finding:

Solve the system of equations represented in vector form as

for point(s) x* for which F (x*) = 0.
@ Here F(x) = (A (x),...,fm(x)) and x = (x1,..., Xm)
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Newton's Method
Gauss-Newton and Levenberg-Marquardt Methods

Chapter 9: Nonlinear Regression

Basic Problems

Root Finding:

Solve the system of equations represented in vector form as

for point(s) x* for which F (x*) = 0.
@ Here F(x) = (A (x),...,fm(x)) and x = (x1,..., Xm)

o Gradient notation: Vf;(x) = (86 (x),. 86 (x ))
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Newton's Method
Gauss-Newton and Levenberg-Marquardt Methods

Chapter 9: Nonlinear Regression

Basic Problems

Root Finding:

Solve the system of equations represented in vector form as

F(x) =0.
for point(s) x* for which F (x*) = 0.
@ Here F(x) = (A (x),...,fm(x)) and x = (x1,..., Xm)
o Gradient notation: Vf;(x) = [ =—— (x),..., =— (x))
@ Jacobian notation:
T_ | 0fi
VF (x) = [VA (X),...,Vip (X)] = |+ :
ij=1,...m
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Newton's Method
Gauss-Newton and Levenberg-Marquardt Methods

Chapter 9: Nonlinear Regression

Basic Problems

Optimization:

Find the minimum value of scalar valued function f (x), where x
ranges over a feasible set Q.
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Newton's Method
Gauss-Newton and Levenberg-Marquardt Methods

Chapter 9: Nonlinear Regression

Basic Problems

Optimization:

Find the minimum value of scalar valued function f (x), where x
ranges over a feasible set Q.

e Set F(x) = Vf (x) = <§)fl(x),,8f(x)>

OXm
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Newton's Method
Gauss-Newton and Levenberg-Marquardt Methods

Chapter 9: Nonlinear Regression

Basic Problems

Optimization:

Find the minimum value of scalar valued function f (x), where x
ranges over a feasible set Q.

o Set F(x) = Vf (x) = <§):(x),...,£;(x)>
32"]_
Dx;0x;

@ Hessian of f: V (V£ (x)) = sz(x) — [
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Newton's Method
Gauss-Newton and Levenberg-Marquardt Methods

Chapter 9: Nonlinear Regression

Taylor Theorems

Suppose that f : R” — R has continuous second partials and
x*,x € R". Then

f(x) = £ (<) + VF (<) (x=x) + O (Jx = x"[°) , x = x.
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Newton's Method
Gauss-Newton and Levenberg-Marquardt Methods

Chapter 9: Nonlinear Regression

Taylor Theorems

Suppose that f : R” — R has continuous second partials and
x*,x € R". Then

f(x) = £ (<) + VF (<) (x=x) + O (Jx = x"[°) , x = x.

Second Order

Suppose that f : R” — R has continuous third partials and
x*,x € R". Then f (x) = f (x*) + VF (x*)" (x — x*) +

% (x — x*)T V2 (x*) (x — x*) + O (Hx . x*\|3) X X,
(See Appendix C for versions of Taylor's theorem with weaker
hypotheses.)
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Newton's Method
Gauss-Newton and Levenberg-Marquardt Methods

Chapter 9: Nonlinear Regression

Newton Algorithms

Root Finding

Input F, VF, x°, Npax
for k =0, ..., Nmax
xkt1l = xk — VF (xk)f1 F (x¥)
if xk*1 xk pass a convergence test
return(x¥)
end
end
return(x"Vmex)
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Convergence Result

Theorem

Let x* be a root of the equation F (x) = 0, where F,x are
m-vectors, F has continuous first partials in some neighborhood of
x* and VF (x*) is non-singular. Then Newton's method yields a
sequence of vectors that converges to x*, provided that x° is
sufficiently close to x*. If, in addition, F has continuous second
partials in some neighborhood of x*, then the convergence is
quadratic in the sense that for some constant K > 0,

2
—

< Kka —x*




Newton's Method
Gauss-Newton and Levenberg-Marquardt Methods

Chapter 9: Nonlinear Regression

Newton for Optimization

Bright Idea:

We know from calculus that where f (x) has a local minimum,
Vf =0. So just let F(x) = V£ (x) and use Newton's method.
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Newton for Optimization

Bright Idea:

We know from calculus that where f (x) has a local minimum,
Vf =0. So just let F(x) = V£ (x) and use Newton's method.

o Result is iteration formula: xkt1 = xk — V2f (xk)_1 \v42 (xk)
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Newton for Optimization

Bright Idea:

We know from calculus that where f (x) has a local minimum,
Vf =0. So just let F(x) = V£ (x) and use Newton's method.

o Result is iteration formula: xkt1 = xk — V2f (xk)_1 \v42 (xk)

@ We can turn this approach on its head: root finding is just a
special case of optimization, i.e., solving F (x) = 0 is the same
as minimizing f (x) = ||F (x)||°.
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Chapter 9: Nonlinear Regression

Newton for Optimization

Bright Idea:

We know from calculus that where f (x) has a local minimum,
Vf =0. So just let F(x) = V£ (x) and use Newton's method.

@ Result is iteration formula: xk*1 = xk — V2f (xk)_1 Vf (xk)

@ We can turn this approach on its head: root finding is just a
special case of optimization, i.e., solving F (x) = 0 is the same
as minimizing f (x) = ||F (x)||°.

@ Downside of root finding point of view of optimization: saddle
points and local maxima x also satisfy V£ (x) = 0.
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Newton's Method
Gauss-Newton and Levenberg-Marquardt Methods

Chapter 9: Nonlinear Regression

Newton for Optimization

Bright Idea:

We know from calculus that where f (x) has a local minimum,
Vf =0. So just let F(x) = V£ (x) and use Newton's method.

@ Result is iteration formula: xk*1 = xk — V2f (xk)_1 Vf (xk)

@ We can turn this approach on its head: root finding is just a
special case of optimization, i.e., solving F (x) = 0 is the same
as minimizing f (x) = ||F (x)||°.

@ Downside of root finding point of view of optimization: saddle
points and local maxima x also satisfy V£ (x) = 0.

@ Upside of optimization view of root finding: if F (x) =0
doesn’t have a root, minimizing  (x) = ||F (x)||* finds the
next best solutions — least squares solutions!
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Newton for Optimization

Bright Idea:

We know from calculus that where f (x) has a local minimum,
Vf =0. So just let F(x) = V£ (x) and use Newton's method.

@ Result is iteration formula: xk*1 = xk — V2f (xk)_1 Vf (xk)
@ We can turn this approach on its head: root finding is just a

special case of optimization, i.e., solving F (x) = 0 is the same
as minimizing f (x) = ||F (x)||°.

@ Downside of root finding point of view of optimization: saddle
points and local maxima x also satisfy V£ (x) = 0.

@ Upside of optimization view of root finding: if F(x) =0
doesn’t have a root, minimizing  (x) = ||F (x)||* finds the
next best solutions — least squares solutions!

o In fact, least squares problem for||Gm — d||? is optimization!

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse The
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Remarks on Newton

This barely scratches the surface of optimization theory (take Math
4/833 if you can!!).
o Far from a zero, Newton does not exhibit quadratic
convergence. It is accelerated by a line search in the Newton
direction —VF (xk)f1 F (xk) for a point that (approximately)

minimizes a merit function like m (x) = ||F (x)][>.

@ Optimization is NOT a special case of root finding. There are
special characteristics of the min f (x) problem that get lost if
one only tries to find a zero of V£ .

@ For example, —Vf is a search direction that leads to the
method of steepest descent. This is not terribly efficient, but
well understood.

@ There is an automatic merit function, namely f (x), in any
search direction. Using this helps avoid saddle points, maxima.
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Gauss-Newton and Levenberg-Marquardt

The Problem:

Given a function F( )= (fi(x),...,fm(x)), minimize

ka = [IF (x)II*.

° Newton s method can be very expensive, due to derivative
evaluations.

o For starters, one shows V£ (x) = 2 (VF (x))" F (x)
o Then, V2f (x) =2 (VF (x))7 VF (x) + Q (x), where

Q (x)contains all the second derivatives.
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