Math 4/896: Seminar in Mathematics Topic: Inverse Theory

Instructor: Thomas Shores
Department of Mathematics

Lecture 25, April 13, 2006 AvH 10

Image Recovery

Problem:

An image is blurred and we want to sharpen it. Let intensity function $I_{true}(x, y)$ define the true image and $I_{blurred}(x, y)$ define the blurred image.

 A typical model results from convolving true image with Gaussian point spread function

$$I_{blurred}\left(x,y\right) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I_{true}\left(x-u,y-v\right) \Psi\left(u,v\right) du dv$$

where
$$\Psi(u, v) = e^{-(u^2+v^2)/(2\sigma^2)}$$
.

- Think about discretizing this over an SVGA image (1024×768) .
- But the discretized matrix should be sparse!

200

lmage Recovery

Problem:

An image is blurred and we want to sharpen it. Let intensity function $I_{true}(x,y)$ define the true image and $I_{blurred}(x,y)$ define the blurred image.

 A typical model results from convolving true image with Gaussian point spread function

$$I_{blurred}(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I_{true}(x-u,y-v) \Psi(u,v) du dv$$

where
$$\Psi(u, v) = e^{-(u^2+v^2)/(2\sigma^2)}$$

- Think about discretizing this over an SVGA image (1024×768) .
- But the discretized matrix should be sparse!

200

Image Recovery

Problem:

An image is blurred and we want to sharpen it. Let intensity function $I_{true}(x, y)$ define the true image and $I_{blurred}(x, y)$ define the blurred image.

 A typical model results from convolving true image with Gaussian point spread function

$$I_{blurred}(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I_{true}(x-u,y-v) \Psi(u,v) du dv$$

where
$$\Psi(u, v) = e^{-(u^2+v^2)/(2\sigma^2)}$$
.

- Think about discretizing this over an SVGA image (1024×768) .

Image Recovery

Problem:

An image is blurred and we want to sharpen it. Let intensity function $I_{true}(x, y)$ define the true image and $I_{blurred}(x, y)$ define the blurred image.

 A typical model results from convolving true image with Gaussian point spread function

$$I_{blurred}(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I_{true}(x-u,y-v) \Psi(u,v) du dv$$

where
$$\Psi(u, v) = e^{-(u^2+v^2)/(2\sigma^2)}$$
.

- Think about discretizing this over an SVGA image (1024×768) .
- But the discretized matrix should be sparse!

Sparse Matrix:

- There are efficient ways of storing such matrices and doing linear algebra on them.
- Given a problem $A\mathbf{x} = \mathbf{b}$ with A sparse, iterative methods become attractive because they usually only require storage of A, \mathbf{x} and some auxillary vectors, and saxpy, gaxpy, dot algorithms ("scalar a*x+y", "general A*x+y", "dot product")
- Classical methods: Jacobi, Gauss-Seidel, Gauss-Seidel SOR and conjugate gradient.
- Methods especially useful for tomographic problems:
 Kaczmarz's method, ART (algebraic reconstruction technique)

Sparse Matrix:

- There are efficient ways of storing such matrices and doing linear algebra on them.
- Given a problem Ax = b with A sparse, iterative methods become attractive because they usually only require storage of A, x and some auxillary vectors, and saxpy, gaxpy, dot algorithms - ("scalar a*x+y", "general A*x+y", "dot product")
- Classical methods: Jacobi, Gauss-Seidel, Gauss-Seidel SOR and conjugate gradient.
- Methods especially useful for tomographic problems:
 Kaczmarz's method, ART (algebraic reconstruction technique)

Sparse Matrix:

- There are efficient ways of storing such matrices and doing linear algebra on them.
- Given a problem Ax = b with A sparse, iterative methods become attractive because they usually only require storage of A, x and some auxillary vectors, and saxpy, gaxpy, dot algorithms ("scalar a*x+y", "general A*x+y", "dot product")
- Classical methods: Jacobi, Gauss-Seidel, Gauss-Seidel SOR and conjugate gradient.
- Methods especially useful for tomographic problems:
 Kaczmarz's method, ART (algebraic reconstruction technique)

Sparse Matrix:

- There are efficient ways of storing such matrices and doing linear algebra on them.
- Given a problem Ax = b with A sparse, iterative methods become attractive because they usually only require storage of A, x and some auxillary vectors, and saxpy, gaxpy, dot algorithms ("scalar a*x+y", "general A*x+y", "dot product")
- Classical methods: Jacobi, Gauss-Seidel, Gauss-Seidel SOR and conjugate gradient.
- Methods especially useful for tomographic problems:
 Kaczmarz's method, ART (algebraic reconstruction technique)

Sparse Matrix:

- There are efficient ways of storing such matrices and doing linear algebra on them.
- Given a problem Ax = b with A sparse, iterative methods become attractive because they usually only require storage of A, x and some auxillary vectors, and saxpy, gaxpy, dot algorithms ("scalar a*x+y", "general A*x+y", "dot product")
- Classical methods: Jacobi, Gauss-Seidel, Gauss-Seidel SOR and conjugate gradient.
- Methods especially useful for tomographic problems:
 Kaczmarz's method, ART (algebraic reconstruction technique).

To regularize in face of iteration:

Use the number of iteration steps taken as a regularization parameter.

- Conjugate gradient methods are designed to work with SPD coefficient matrices A in the equation $A\mathbf{x} = \mathbf{b}$.
- So in the unregularized least squares problem $G^TG\mathbf{m} = G^T\mathbf{d}$ take $A = G^TG$ and $\mathbf{b} = G^T\mathbf{d}$, resulting in the CGLS method, in which we avoid explicitly computing G^TG .
- Key fact: in exact arithmetic, if we start at $\mathbf{m}^{(0)} = \mathbf{0}$, then $\|\mathbf{m}^{(k)}\|$ is monotone increasing in k and $\|G\mathbf{m}^{(k)} \mathbf{d}\|$ is monotonically decreasing in k. So we can make an L-curve in terms of k.

To regularize in face of iteration:

Use the number of iteration steps taken as a regularization parameter.

- Conjugate gradient methods are designed to work with SPD coefficient matrices A in the equation $A\mathbf{x} = \mathbf{b}$.
- So in the unregularized least squares problem $G^TG\mathbf{m} = G^T\mathbf{d}$ take $A = G^TG$ and $\mathbf{b} = G^T\mathbf{d}$, resulting in the CGLS method, in which we avoid explicitly computing G^TG .
- Key fact: in exact arithmetic, if we start at $\mathbf{m}^{(0)} = \mathbf{0}$, then $\|\mathbf{m}^{(k)}\|$ is monotone increasing in k and $\|G\mathbf{m}^{(k)} \mathbf{d}\|$ is monotonically decreasing in k. So we can make an L-curve in terms of k.

To regularize in face of iteration:

Use the number of iteration steps taken as a regularization parameter.

- Conjugate gradient methods are designed to work with SPD coefficient matrices A in the equation $A\mathbf{x} = \mathbf{b}$.
- So in the unregularized least squares problem $G^TG\mathbf{m} = G^T\mathbf{d}$ take $A = G^TG$ and $\mathbf{b} = G^T\mathbf{d}$, resulting in the CGLS method, in which we avoid explicitly computing G^TG .
- Key fact: in exact arithmetic, if we start at $\mathbf{m}^{(0)} = \mathbf{0}$, then $\|\mathbf{m}^{(k)}\|$ is monotone increasing in k and $\|G\mathbf{m}^{(k)} \mathbf{d}\|$ is monotonically decreasing in k. So we can make an L-curve in terms of k.

To regularize in face of iteration:

Use the number of iteration steps taken as a regularization parameter.

- Conjugate gradient methods are designed to work with SPD coefficient matrices A in the equation $A\mathbf{x} = \mathbf{b}$.
- So in the unregularized least squares problem $G^TG\mathbf{m} = G^T\mathbf{d}$ take $A = G^TG$ and $\mathbf{b} = G^T\mathbf{d}$, resulting in the CGLS method, in which we avoid explicitly computing G^TG .
- Key fact: in exact arithmetic, if we start at $\mathbf{m}^{(0)} = \mathbf{0}$, then $\|\mathbf{m}^{(k)}\|$ is monotone increasing in k and $\|G\mathbf{m}^{(k)} \mathbf{d}\|$ is monotonically decreasing in k. So we can make an L-curve in terms of k.

7.1: Using Bounds as Constraints
7.2: Maximum Entropy Regularization
7.3: Total Variation

Outline

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3. Total Variation

Basic Idea:

- Most common restrictions: on the magnitude of the parameter values. Which leads to the problem:
- Minimize f (m) subject to l ≤ m ≤ u.
- One could choose $f(\mathbf{m}) = \|G\mathbf{m} \mathbf{d}\|_2(BVLS)$
- One could choose $f(\mathbf{m}) = \mathbf{c}^T \cdot \mathbf{m}$ with additional constraint $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$.

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

Basic Idea:

- Most common restrictions: on the magnitude of the parameter values. Which leads to the problem:
- Minimize $f(\mathbf{m})$ subject to $l \le m \le u$.
- One could choose $f(\mathbf{m}) = \|G\mathbf{m} \mathbf{d}\|_2(BVLS)$
- One could choose $f(\mathbf{m}) = \mathbf{c}^T \cdot \mathbf{m}$ with additional constraint $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$.

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.2. Total Variation

Basic Idea:

- Most common restrictions: on the magnitude of the parameter values. Which leads to the problem:
- Minimize $f(\mathbf{m})$ subject to $l \le m \le u$.
- One could choose $f(\mathbf{m}) = \|G\mathbf{m} \mathbf{d}\|_2(\mathsf{BVLS})$
- One could choose $f(\mathbf{m}) = \mathbf{c}^T \cdot \mathbf{m}$ with additional constraint $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$.

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

Basic Idea:

- Most common restrictions: on the magnitude of the parameter values. Which leads to the problem:
- Minimize $f(\mathbf{m})$ subject to $l \le m \le u$.
- One could choose $f(\mathbf{m}) = \|G\mathbf{m} \mathbf{d}\|_2(\mathsf{BVLS})$
- One could choose $f(\mathbf{m}) = \mathbf{c}^T \cdot \mathbf{m}$ with additional constraint $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$.

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

Basic Idea:

- Most common restrictions: on the magnitude of the parameter values. Which leads to the problem:
- Minimize $f(\mathbf{m})$ subject to $l \le m \le u$.
- One could choose $f(\mathbf{m}) = \|G\mathbf{m} \mathbf{d}\|_2(\mathsf{BVLS})$
- One could choose $f(\mathbf{m}) = \mathbf{c}^T \cdot \mathbf{m}$ with additional constraint $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$.

Example 3.3

Contaminant Transport

Let C(x,t) be the concentration of a pollutant at point x in a linear stream, time t, where $0 \le x < \infty$ and $0 \le t \le T$. The defining model

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - v \frac{\partial C}{\partial x}$$

$$C(0,t) = C_{in}(t)$$

$$C(x,t) \to 0, x \to \infty$$

$$C(x,0) = C_0(x)$$

Solution:

In the case that $C_0(x) \equiv 0$, the explicit solution is

$$C(x,T) = \int_0^T C_{in}(t) f(x,T-t) dt,$$

where

$$f(x,\tau) = \frac{x}{2\sqrt{\pi D\tau^3}} e^{-(x-v\tau)^2/(4D\tau)}$$

Inverse Problem

Problem:

Given simultaneous measurements at time T, to estimate the contaminant inflow history. That is, given data

$$d_i = C(x_i, T), i = 1, 2, ..., m,$$

to estimate

$$C_{in}(t), 0 \le t \le T.$$

7.1: Using Bounds as Constraints
7.2: Maximum Entropy Regularization
7.3: Total Variation

Outline

$$E(\mathbf{m}) = -\sum_{j=1}^{n} m_j \ln(w_j m_j)$$
, **w** a vector of positive weights.

- Motivated by Shannon's information theory and Bolzmann's theory of entropy in statistical mechanics. A measure of uncertainty about which message or physical state will occur.
- Shannon's entropy function for a probability distribution $\{p_i\}_{i=1}^n$ is $H(\mathbf{p}) = -\sum_{i=1}^n p_i \ln(p_i)$.
- Bayesian Maximimum Entropy Principle: least biased model is one that maximizes entropy subject to constraints of testable information like bounds or average values of parameters.

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

$$E(\mathbf{m}) = -\sum_{j=1}^{n} m_j \ln(w_j m_j)$$
, **w** a vector of positive weights.

- Motivated by Shannon's information theory and Bolzmann's theory of entropy in statistical mechanics. A measure of uncertainty about which message or physical state will occur.
- Shannon's entropy function for a probability distribution $\{p_i\}_{i=1}^n$ is $H(\mathbf{p}) = -\sum_{i=1}^n p_i \ln{(p_i)}$.
- Bayesian Maximimum Entropy Principle: least biased model is one that maximizes entropy subject to constraints of testable information like bounds or average values of parameters.

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

$$E(\mathbf{m}) = -\sum_{j=1}^{n} m_j \ln(w_j m_j)$$
, **w** a vector of positive weights.

- Motivated by Shannon's information theory and Bolzmann's theory of entropy in statistical mechanics. A measure of uncertainty about which message or physical state will occur.
- Shannon's entropy function for a probability distribution $\{p_i\}_{i=1}^n$ is $H(\mathbf{p}) = -\sum_{i=1}^n p_i \ln{(p_i)}$.
- Bayesian Maximimum Entropy Principle: least biased model is one that maximizes entropy subject to constraints of testable information like bounds or average values of parameters.

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

$$E(\mathbf{m}) = -\sum_{j=1}^{n} m_j \ln(w_j m_j)$$
, **w** a vector of positive weights.

- Motivated by Shannon's information theory and Bolzmann's theory of entropy in statistical mechanics. A measure of uncertainty about which message or physical state will occur.
- Shannon's entropy function for a probability distribution $\{p_i\}_{i=1}^n$ is $H(\mathbf{p}) = -\sum_{i=1}^n p_i \ln{(p_i)}$.
- Bayesian Maximimum Entropy Principle: least biased model is one that maximizes entropy subject to constraints of testable information like bounds or average values of parameters.

Maximize Entropy:

That is, our version. So problem looks like:

• Maximize
$$-\sum_{j=1}^{n} m_j \ln (w_j m_j)$$

- Subject to $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$ and $\mathbf{m} \ge \mathbf{0}$.
- In absence of extra information, take $w_i = 1$. Lagrange multipliers give:
- Minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \sum_{j=1}^n m_j \ln(w_j m_j)$,
- subject to $m \ge 0$

Maximize Entropy:

That is, our version. So problem looks like:

- Maximize $-\sum_{j=1}^{n} m_j \ln(w_j m_j)$
- Subject to $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$ and $\mathbf{m} \ge \mathbf{0}$.
- In absence of extra information, take $w_i = 1$. Lagrange multipliers give:
- Minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \sum_{j=1}^n m_j \ln(w_j m_j)$,
- subject to $m \ge 0$

Maximize Entropy:

That is, our version. So problem looks like:

- Maximize $-\sum_{j=1}^{n} m_j \ln(w_j m_j)$
- Subject to $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$ and $\mathbf{m} \ge \mathbf{0}$.
- In absence of extra information, take $w_i = 1$. Lagrange multipliers give:
- Minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \sum_{j=1}^n m_j \ln(w_j m_j)$,
- subject to $m \ge 0$.

Maximize Entropy:

That is, our version. So problem looks like:

- Maximize $-\sum_{j=1}^{n} m_j \ln(w_j m_j)$
- Subject to $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$ and $\mathbf{m} \ge \mathbf{0}$.
- In absence of extra information, take $w_i = 1$. Lagrange multipliers give:
- Minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \sum_{j=1}^n m_j \ln(w_j m_j)$,
- subject to $m \ge 0$.

Maximize Entropy:

That is, our version. So problem looks like:

- Maximize $-\sum_{j=1}^{n} m_j \ln(w_j m_j)$
- Subject to $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$ and $\mathbf{m} \ge \mathbf{0}$.
- In absence of extra information, take $w_i = 1$. Lagrange multipliers give:
- Minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \sum_{j=1}^n m_j \ln(w_j m_j)$,
- ullet subject to $\mathbf{m} \geq \mathbf{0}$

Maximize Entropy:

That is, our version. So problem looks like:

- Maximize $-\sum_{j=1}^{n} m_j \ln(w_j m_j)$
- Subject to $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$ and $\mathbf{m} \ge \mathbf{0}$.
- In absence of extra information, take $w_i = 1$. Lagrange multipliers give:
- Minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \sum_{j=1}^n m_j \ln(w_j m_j)$,
- subject to $m \ge 0$.

7.1: Using Bounds as Constraints
7.2: Maximum Entropy Regularization
7.3: Total Variation

Outline

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

TV Regularization

We only consider total variation regularization from this section.

Regularization term:

$$\mathsf{DV}\left(\mathbf{m}\right) = \sum_{j=1}^{n-1} |m_{j+1} - m_j| = \|L\mathbf{m}\|_1$$
, where L is the matrix used in

first order Tikhonov regularization.

- ullet Problem becomes: minimize $\| \mathbf{G} \mathbf{m} \mathbf{d} \|_2^2 + \alpha \| \mathbf{m} \|_1$
- Better yet: minimize $\|\mathbf{G}\mathbf{m} \mathbf{d}\|_1 + \alpha \|\mathbf{m}\|_1$.
- Equivalently: minimize $\left\| \begin{bmatrix} G \\ \alpha L \end{bmatrix} \mathbf{m} \begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix} \right\|_{1}$.
- Now just use IRLS (iteratively reweighted least squares) to solve it and an L-curve of sorts to find optimal α .

- 7.1: Using Bounds as Constraints 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

We only consider total variation regularization from this section.

Regularization term:

$$\mathsf{DV}\left(\mathbf{m}\right) = \sum_{j=1}^{n-1} |m_{j+1} - m_j| = \|L\mathbf{m}\|_1$$
, where L is the matrix used in

- ullet Problem becomes: minimize $\| \mathbf{G} \mathbf{m} \mathbf{d} \|_2^2 + \alpha \| \mathbf{m} \|_1$
- Better yet: minimize $\|\mathbf{G}\mathbf{m} \mathbf{d}\|_1 + \alpha \|\mathbf{m}\|_1$.
- Equivalently: minimize $\left\| \begin{bmatrix} G \\ \alpha L \end{bmatrix} \mathbf{m} \begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix} \right\|_{1}$.
- Now just use IRLS (iteratively reweighted least squares) to solve it and an L-curve of sorts to find optimal α .

- 7.1: Using Bounds as Constraints 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

We only consider total variation regularization from this section.

Regularization term:

$$\mathsf{DV}\left(\mathbf{m}\right) = \sum_{j=1}^{n-1} |m_{j+1} - m_j| = \|L\mathbf{m}\|_1$$
, where L is the matrix used in

- ullet Problem becomes: minimize $\| \mathcal{G} \mathbf{m} \mathbf{d} \|_2^2 + \alpha \| \mathbf{m} \|_1$
- Better yet: minimize $\|\mathbf{G}\mathbf{m} \mathbf{d}\|_1 + \alpha \|\mathbf{m}\|_1$.
- Equivalently: minimize $\begin{bmatrix} G \\ \alpha L \end{bmatrix} \mathbf{m} \begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix} \Big|_{1}$.
- Now just use IRLS (iteratively reweighted least squares) to solve it and an L-curve of sorts to find optimal α .

- 7.1: Using Bounds as Constraints 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

We only consider total variation regularization from this section.

Regularization term:

$$\mathsf{DV}\left(\mathbf{m}\right) = \sum_{j=1}^{n-1} |m_{j+1} - m_j| = \|L\mathbf{m}\|_1$$
, where L is the matrix used in

- Problem becomes: minimize $\|G\mathbf{m} \mathbf{d}\|_{2}^{2} + \alpha \|\mathbf{m}\|_{1}$
- Better yet: minimize $\|G\mathbf{m} \mathbf{d}\|_1 + \alpha \|\mathbf{m}\|_1$.
- Equivalently: minimize $\begin{bmatrix} G \\ \alpha L \end{bmatrix} \mathbf{m} \begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix}_{1}$
- Now just use IRLS (iteratively reweighted least squares) to

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

We only consider total variation regularization from this section.

Regularization term:

$$\mathsf{DV}\left(\mathbf{m}\right) = \sum_{j=1}^{n-1} |m_{j+1} - m_j| = \|L\mathbf{m}\|_1$$
, where L is the matrix used in

- ullet Problem becomes: minimize $\| \mathbf{G} \mathbf{m} \mathbf{d} \|_2^2 + \alpha \| \mathbf{m} \|_1$
- Better yet: minimize $\|\mathbf{G}\mathbf{m} \mathbf{d}\|_1 + \alpha \|\mathbf{m}\|_1$.
- Equivalently: minimize $\left\| \begin{bmatrix} G \\ \alpha L \end{bmatrix} \mathbf{m} \begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix} \right\|_{1}$.
- Now just use IRLS (iteratively reweighted least squares) to solve it and an L-curve of sorts to find optimal α .

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

We only consider total variation regularization from this section.

Regularization term:

$$\mathsf{DV}\left(\mathbf{m}
ight) = \sum_{j=1}^{m-1} |m_{j+1} - m_j| = \|L\mathbf{m}\|_1$$
, where L is the matrix used in

- ullet Problem becomes: minimize $\| \mathbf{G} \mathbf{m} \mathbf{d} \|_2^2 + \alpha \| \mathbf{m} \|_1$
- Better yet: minimize $\|\mathbf{G}\mathbf{m} \mathbf{d}\|_1 + \alpha \|\mathbf{m}\|_1$.
- Equivalently: minimize $\left\| \begin{bmatrix} G \\ \alpha L \end{bmatrix} \mathbf{m} \begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix} \right\|_{1}$.
- Now just use IRLS (iteratively reweighted least squares) to solve it and an L-curve of sorts to find optimal α .

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

Total Variation

Key Property:

TV doesn't smooth discontinuities as much as Tikhonov regularization.

Change startupfile path to Examples/chap7/examp3 execute it and examp.

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

Total Variation

Key Property:

 TV doesn't smooth discontinuities as much as Tikhonov regularization.

Change startupfile path to Examples/chap7/examp3 execute it and examp.

Outline

Root Finding:

Solve the system of equations represented in vector form as

$$F(x) = 0.$$

- Here $\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$ and $x = (x_1, \dots, x_m)$
- Gradient notation: $\nabla f_j(\mathbf{x}) = \left(\frac{\partial f_j}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f_j}{\partial x_m}(\mathbf{x})\right)$.
- Jacobian notation:

$$\nabla \mathsf{F}(\mathsf{x}) = \left[\nabla f_1(\mathsf{x}), \dots, \nabla f_m(\mathsf{x})\right]^T = \left[\frac{\partial f_i}{\partial x_j}\right]_{i,i=1,\dots,m}$$

Root Finding:

Solve the system of equations represented in vector form as

$$F(x) = 0.$$

- Here $F(x) = (f_1(x), \dots, f_m(x))$ and $x = (x_1, \dots, x_m)$
- Gradient notation: $\nabla f_j(\mathbf{x}) = \left(\frac{\partial f_j}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f_j}{\partial x_m}(\mathbf{x})\right)$.
- Jacobian notation:

$$\nabla \mathsf{F}(\mathsf{x}) = \left[\nabla f_1(\mathsf{x}), \dots, \nabla f_m(\mathsf{x})\right]^T = \left[\frac{\partial f_i}{\partial x_j}\right]_{i,i=1,\dots,m}$$

Root Finding:

Solve the system of equations represented in vector form as

$$F(x) = 0.$$

- Here $\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$ and $x = (x_1, \dots, x_m)$
- Gradient notation: $\nabla f_j(\mathbf{x}) = \left(\frac{\partial f_j}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f_j}{\partial x_m}(\mathbf{x})\right)$.
- Jacobian notation

$$\nabla F(\mathbf{x}) = \left[\nabla f_1(\mathbf{x}), \dots, \nabla f_m(\mathbf{x})\right]^T = \left[\frac{\partial f_i}{\partial x_j}\right]_{i,i=1,\dots,m}$$

Root Finding:

Solve the system of equations represented in vector form as

$$F(x) = 0.$$

- Here $F(x) = (f_1(x), \dots, f_m(x))$ and $x = (x_1, \dots, x_m)$
- Gradient notation: $\nabla f_j(\mathbf{x}) = \left(\frac{\partial f_j}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f_j}{\partial x_m}(\mathbf{x})\right)$.
- Jacobian notation:

$$\nabla \mathbf{F}(\mathbf{x}) = \left[\nabla f_1(\mathbf{x}), \dots, \nabla f_m(\mathbf{x})\right]^T = \left[\frac{\partial f_i}{\partial x_j}\right]_{i,i=1,\dots,m}$$

Optimization:

Find the minimum value of scalar valued function $f(\mathbf{x})$, where \mathbf{x} ranges over a feasible set Ω .

• Set
$$F(x) = \nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_m}(x)\right)$$

• Hessian of
$$f: \nabla (\nabla f(\mathbf{x})) \equiv \nabla^2 f(\mathbf{x}) = \left[\frac{\partial^2 f}{\partial x_i \partial x_i}\right].$$

Optimization:

Find the minimum value of scalar valued function $f(\mathbf{x})$, where \mathbf{x} ranges over a feasible set Ω .

• Set
$$\mathbf{F}(\mathbf{x}) = \nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f}{\partial x_m}(\mathbf{x})\right)$$

• Hessian of
$$f \colon \nabla (\nabla f(\mathbf{x})) \equiv \nabla^2 f(\mathbf{x}) = \left[\frac{\partial^2 f}{\partial x_i \partial x_i} \right].$$

Optimization:

Find the minimum value of scalar valued function $f(\mathbf{x})$, where \mathbf{x} ranges over a feasible set Ω .

• Set
$$\mathbf{F}(\mathbf{x}) = \nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f}{\partial x_m}(\mathbf{x})\right)$$

• Hessian of
$$f \colon \nabla (\nabla f(\mathbf{x})) \equiv \nabla^2 f(\mathbf{x}) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j} \right].$$

Taylor Theorems

First Order

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ has continuous second partials and $\mathbf{x}^*, \mathbf{x} \in \mathbb{R}^n$. Then

$$f(\mathbf{x}) = f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) + \mathcal{O}(\|\mathbf{x} - \mathbf{x}^*\|^2), \ \mathbf{x} \to \mathbf{x}.$$

Second Order

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ has continuous third partials and $\mathbf{x}^*, \mathbf{x} \in \mathbb{R}^n$. Then $f(\mathbf{x}) = f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^T \nabla^2 f(\mathbf{x}^*) (\mathbf{x} - \mathbf{x}^*) + \mathcal{O}\left(\|\mathbf{x} - \mathbf{x}^*\|^3\right), \mathbf{x} \to \mathbf{x}$. (See Appendix C for versions of Taylor's theorem with weaker hypotheses.)

Taylor Theorems

First Order

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ has continuous second partials and $\mathbf{x}^*, \mathbf{x} \in \mathbb{R}^n$. Then

$$f(\mathbf{x}) = f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) + \mathcal{O}(\|\mathbf{x} - \mathbf{x}^*\|^2), \ \mathbf{x} \to \mathbf{x}.$$

Second Order

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ has continuous third partials and $\mathbf{x}^*, \mathbf{x} \in \mathbb{R}^n$. Then $f(\mathbf{x}) = f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^T \nabla^2 f(\mathbf{x}^*) (\mathbf{x} - \mathbf{x}^*) + \mathcal{O}\left(\|\mathbf{x} - \mathbf{x}^*\|^3\right), \mathbf{x} \to \mathbf{x}$. (See Appendix C for versions of Taylor's theorem with weaker hypotheses.)

Newton Algorithms

Root Finding

```
Input \mathbf{F}, \nabla \mathbf{F}, \mathbf{x}^0, N_{max} for k=0,...,N_{max} \mathbf{x}^{k+1}=\mathbf{x}^k-\nabla \mathbf{F}\left(\mathbf{x}^k\right)^{-1}\mathbf{F}\left(\mathbf{x}^k\right) if \mathbf{x}^{k+1},\mathbf{x}^k pass a convergence test return(\mathbf{x}^k) end end return(\mathbf{x}^{N_{max}})
```

Convergence Result

Theorem

Let \mathbf{x}^* be a root of the equation $\mathbf{F}(\mathbf{x}) = \mathbf{0}$, where \mathbf{F}, \mathbf{x} are m-vectors, \mathbf{F} has continuous first partials in some neighborhood of \mathbf{x}^* and $\nabla \mathbf{F}(\mathbf{x}^*)$ is non-singular. Then Newton's method yields a sequence of vectors that converges to \mathbf{x}^* , provided that \mathbf{x}^0 is sufficiently close to \mathbf{x}^* . If, in addition, \mathbf{F} has continuous second partials in some neighborhood of \mathbf{x}^* , then the convergence is quadratic in the sense that for some constant K > 0,

$$\left\|\mathbf{x}^{k+1} - \mathbf{x}^*\right\| \le K \left\|\mathbf{x}^k - \mathbf{x}^*\right\|^2.$$

Bright Idea:

We know from calculus that where f(x) has a local minimum, $\nabla f = \mathbf{0}$. So just let $\mathbf{F}(\mathbf{x}) = \nabla f(\mathbf{x})$ and use Newton's method.

- Result is iteration formula: $\mathbf{x}^{k+1} = \mathbf{x}^k \nabla^2 f(\mathbf{x}^k)^{-1} \nabla f(\mathbf{x}^k)$
- We can turn this approach on its head: root finding is just a
- Downside of root finding point of view of optimization: saddle points and local maxima x also satisfy $\nabla f(\mathbf{x}) = \mathbf{0}$.
- Upside of optimization view of root finding: if F(x) = 0
- In fact, least squares problem for $||G\mathbf{m} \mathbf{d}||^2$ is optimization!

Bright Idea:

We know from calculus that where $f(\mathbf{x})$ has a local minimum, $\nabla f = \mathbf{0}$. So just let $\mathbf{F}(\mathbf{x}) = \nabla f(\mathbf{x})$ and use Newton's method.

- Result is iteration formula: $\mathbf{x}^{k+1} = \mathbf{x}^k \nabla^2 f(\mathbf{x}^k)^{-1} \nabla f(\mathbf{x}^k)$
- We can turn this approach on its head: root finding is just a special case of optimization, i.e., solving F(x) = 0 is the same as minimizing $f(x) = ||F(x)||^2$.
- Downside of root finding point of view of optimization: saddle points and local maxima x also satisfy $\nabla f(x) = 0$.
- Upside of optimization view of root finding: if $\mathbf{F}(\mathbf{x}) = \mathbf{0}$ doesn't have a root, minimizing $f(\mathbf{x}) = \|\mathbf{F}(\mathbf{x})\|^2$ finds the next best solutions least squares solutions!
- In fact, least squares problem for $\|G\mathbf{m} \mathbf{d}\|^2$ is optimization!

Bright Idea:

We know from calculus that where f(x) has a local minimum, $\nabla f = \mathbf{0}$. So just let $\mathbf{F}(\mathbf{x}) = \nabla f(\mathbf{x})$ and use Newton's method.

- Result is iteration formula: $\mathbf{x}^{k+1} = \mathbf{x}^k \nabla^2 f(\mathbf{x}^k)^{-1} \nabla f(\mathbf{x}^k)$
- We can turn this approach on its head: root finding is just a special case of optimization, i.e., solving F(x) = 0 is the same as minimizing $f(\mathbf{x}) = \|\mathbf{F}(\mathbf{x})\|^2$.
- Downside of root finding point of view of optimization: saddle points and local maxima x also satisfy $\nabla f(\mathbf{x}) = \mathbf{0}$.
- Upside of optimization view of root finding: if F(x) = 0
- In fact, least squares problem for $||G\mathbf{m} \mathbf{d}||^2$ is optimization!

Bright Idea:

We know from calculus that where f(x) has a local minimum, $\nabla f = \mathbf{0}$. So just let $\mathbf{F}(\mathbf{x}) = \nabla f(\mathbf{x})$ and use Newton's method.

- Result is iteration formula: $\mathbf{x}^{k+1} = \mathbf{x}^k \nabla^2 f(\mathbf{x}^k)^{-1} \nabla f(\mathbf{x}^k)$
- We can turn this approach on its head: root finding is just a special case of optimization, i.e., solving F(x) = 0 is the same as minimizing $f(\mathbf{x}) = \|\mathbf{F}(\mathbf{x})\|^2$.
- Downside of root finding point of view of optimization: saddle points and local maxima \mathbf{x} also satisfy $\nabla f(\mathbf{x}) = \mathbf{0}$.
- Upside of optimization view of root finding: if F(x) = 0
- In fact, least squares problem for $||G\mathbf{m} \mathbf{d}||^2$ is optimization!

Bright Idea:

We know from calculus that where $f(\mathbf{x})$ has a local minimum, $\nabla f = \mathbf{0}$. So just let $\mathbf{F}(\mathbf{x}) = \nabla f(\mathbf{x})$ and use Newton's method.

- Result is iteration formula: $\mathbf{x}^{k+1} = \mathbf{x}^k \nabla^2 f(\mathbf{x}^k)^{-1} \nabla f(\mathbf{x}^k)$
- We can turn this approach on its head: root finding is just a special case of optimization, i.e., solving F(x) = 0 is the same as minimizing $f(\mathbf{x}) = \|\mathbf{F}(\mathbf{x})\|^2$.
- Downside of root finding point of view of optimization: saddle points and local maxima x also satisfy $\nabla f(\mathbf{x}) = \mathbf{0}$.
- Upside of optimization view of root finding: if F(x) = 0doesn't have a root, minimizing $f(\mathbf{x}) = \|\mathbf{F}(\mathbf{x})\|^2$ finds the next best solutions - least squares solutions!
- In fact, least squares problem for $||G\mathbf{m} \mathbf{d}||^2$ is optimization!

Bright Idea:

We know from calculus that where $f(\mathbf{x})$ has a local minimum, $\nabla f = \mathbf{0}$. So just let $\mathbf{F}(\mathbf{x}) = \nabla f(\mathbf{x})$ and use Newton's method.

- Result is iteration formula: $\mathbf{x}^{k+1} = \mathbf{x}^k \nabla^2 f(\mathbf{x}^k)^{-1} \nabla f(\mathbf{x}^k)$
- We can turn this approach on its head: root finding is just a special case of optimization, i.e., solving F(x) = 0 is the same as minimizing $f(x) = ||F(x)||^2$.
- Downside of root finding point of view of optimization: saddle points and local maxima \mathbf{x} also satisfy $\nabla f(\mathbf{x}) = \mathbf{0}$.
- Upside of optimization view of root finding: if $\mathbf{F}(\mathbf{x}) = \mathbf{0}$ doesn't have a root, minimizing $f(\mathbf{x}) = \|\mathbf{F}(\mathbf{x})\|^2$ finds the next best solutions least squares solutions!
- In fact, least squares problem for $\|G\mathbf{m} \mathbf{d}\|^2$ is optimization!

About Newton:

- Far from a zero, Newton does not exhibit quadratic convergence. It is accelerated by a line search in the Newton direction $-\nabla \mathbf{F} \left(\mathbf{x}^k\right)^{-1} \mathbf{F} \left(\mathbf{x}^k\right)$ for a point that (approximately) minimizes a merit function like $m(\mathbf{x}) = \|\mathbf{F}(\mathbf{x})\|^2$.
- Optimization is NOT a special case of root finding. There are special characteristics of the min $f(\mathbf{x})$ problem that get lost if one only tries to find a zero of ∇f .
- For example, $-\nabla f$ is a search direction that leads to the method of steepest descent. This is not terribly efficient, but well understood.
- There is an automatic merit function, namely f(x), in any search direction. Using this helps avoid saddle points, maxima

About Newton:

- Far from a zero, Newton does not exhibit quadratic convergence. It is accelerated by a line search in the Newton direction $-\nabla \mathbf{F} \left(\mathbf{x}^k\right)^{-1} \mathbf{F} \left(\mathbf{x}^k\right)$ for a point that (approximately) minimizes a merit function like $m(\mathbf{x}) = \|\mathbf{F}(\mathbf{x})\|^2$.
- Optimization is NOT a special case of root finding. There are special characteristics of the min $f(\mathbf{x})$ problem that get lost if one only tries to find a zero of ∇f .
- For example, $-\nabla f$ is a search direction that leads to the method of steepest descent. This is not terribly efficient, but well understood.
- There is an automatic merit function, namely f(x), in any search direction. Using this helps avoid saddle points, maximatically approximately f(x).

About Newton:

- Far from a zero, Newton does not exhibit quadratic convergence. It is accelerated by a line search in the Newton direction $-\nabla \mathbf{F} \left(\mathbf{x}^k\right)^{-1} \mathbf{F} \left(\mathbf{x}^k\right)$ for a point that (approximately) minimizes a merit function like $m(\mathbf{x}) = \|\mathbf{F}(\mathbf{x})\|^2$.
- Optimization is NOT a special case of root finding. There are special characteristics of the min $f(\mathbf{x})$ problem that get lost if one only tries to find a zero of ∇f .
- For example, $-\nabla f$ is a search direction that leads to the method of steepest descent. This is not terribly efficient, but well understood.
- There is an automatic merit function, namely f(x), in any search direction. Using this helps avoid saddle points, maxim

About Newton:

- Far from a zero, Newton does not exhibit quadratic convergence. It is accelerated by a line search in the Newton direction $-\nabla \mathbf{F} \left(\mathbf{x}^k\right)^{-1} \mathbf{F} \left(\mathbf{x}^k\right)$ for a point that (approximately) minimizes a merit function like $m(\mathbf{x}) = \|\mathbf{F}(\mathbf{x})\|^2$.
- Optimization is NOT a special case of root finding. There are special characteristics of the min $f(\mathbf{x})$ problem that get lost if one only tries to find a zero of ∇f .
- For example, $-\nabla f$ is a search direction that leads to the method of steepest descent. This is not terribly efficient, but well understood.
- There is an automatic merit function, namely $f(\mathbf{x})$, in any search direction. Using this helps avoid saddle points, maxim

About Newton:

- Far from a zero, Newton does not exhibit quadratic convergence. It is accelerated by a line search in the Newton direction $-\nabla \mathbf{F} \left(\mathbf{x}^k\right)^{-1} \mathbf{F} \left(\mathbf{x}^k\right)$ for a point that (approximately) minimizes a merit function like $m(\mathbf{x}) = \|\mathbf{F}(\mathbf{x})\|^2$.
- Optimization is NOT a special case of root finding. There are special characteristics of the min $f(\mathbf{x})$ problem that get lost if one only tries to find a zero of ∇f .
- For example, $-\nabla f$ is a search direction that leads to the method of steepest descent. This is not terribly efficient, but well understood.
- There is an automatic merit function, namely $f(\mathbf{x})$, in any search direction. Using this helps avoid saddle points, maxima.

Outline

The Problem:

Given a function
$$\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$$
, minimize $f(\mathbf{x}) = \sum_{k=0}^{m} f_k(\mathbf{x})^2 = \|\mathbf{F}(\mathbf{x})\|^2$.

- Newton's method can be very expensive, due to derivative evaluations.
- For starters, one shows $\nabla f(\mathbf{x}) = 2(\nabla \mathbf{F}(\mathbf{x}))^T \mathbf{F}(\mathbf{x})$
- Then, $\nabla^2 f(\mathbf{x}) = 2 (\nabla \mathbf{F}(\mathbf{x}))^T \nabla \mathbf{F}(\mathbf{x}) + Q(\mathbf{x})$, where $Q(\mathbf{x})$ contains all the second derivatives.

The Problem:

Given a function $\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$, minimize $f(\mathbf{x}) = \sum_{k=0}^{m} f_k(\mathbf{x})^2 = \|\mathbf{F}(\mathbf{x})\|^2$.

- Newton's method can be very expensive, due to derivative evaluations.
- For starters, one shows $\nabla f(\mathbf{x}) = 2(\nabla \mathbf{F}(\mathbf{x}))^T \mathbf{F}(\mathbf{x})$
- Then, $\nabla^2 f(\mathbf{x}) = 2 (\nabla \mathbf{F}(\mathbf{x}))^T \nabla \mathbf{F}(\mathbf{x}) + Q(\mathbf{x})$, where $Q(\mathbf{x})$ contains all the second derivatives.

The Problem:

Given a function $\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$, minimize $f(\mathbf{x}) = \sum_{k=0}^{m} f_k(\mathbf{x})^2 = \|\mathbf{F}(\mathbf{x})\|^2$.

- Newton's method can be very expensive, due to derivative evaluations.
- For starters, one shows $\nabla f(\mathbf{x}) = 2(\nabla \mathbf{F}(\mathbf{x}))^T \mathbf{F}(\mathbf{x})$
- Then, $\nabla^2 f(\mathbf{x}) = 2(\nabla \mathbf{F}(\mathbf{x}))^T \nabla \mathbf{F}(\mathbf{x}) + Q(\mathbf{x})$, where $Q(\mathbf{x})$ contains all the second derivatives.

The Problem:

Given a function $\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$, minimize $f(\mathbf{x}) = \sum_{k=1}^{m} f_k(\mathbf{x})^2 = \|\mathbf{F}(\mathbf{x})\|^2$.

- Newton's method can be very expensive, due to derivative evaluations.
- For starters, one shows $\nabla f(\mathbf{x}) = 2 (\nabla \mathbf{F}(\mathbf{x}))^T \mathbf{F}(\mathbf{x})$
- Then, $\nabla^2 f(\mathbf{x}) = 2(\nabla \mathbf{F}(\mathbf{x}))^T \nabla \mathbf{F}(\mathbf{x}) + Q(\mathbf{x})$, where $Q(\mathbf{x})$ contains all the second derivatives.

Jewton's Method Gauss-Newton and Levenberg-Marquardt Methods

• Comment 5.