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Image Recovery

Problem:

An image is blurred and we want to sharpen it. Let intensity
function Itrue (x , y)de�ne the true image and Iblurred (x , y) de�ne
the blurred image.

A typical model results from convolving true image with
Gaussian point spread function

Iblurred (x , y) =

∫ ∞

−∞

∫ ∞

−∞
Itrue (x − u, y − v) Ψ (u, v) du dv

where Ψ(u, v) = e−(u2+v2)/(2σ2).
Think about discretizing this over an SVGA image
(1024× 768).

But the discretized matrix should be sparse!
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Sparse Matrices and Iterative Methods

Sparse Matrix:

A matrix with su�ciently many zeros that we should pay attention
to them.

There are e�cient ways of storing such matrices and doing
linear algebra on them.

Given a problem Ax = b with A sparse, iterative methods
become attractive because they usually only require storage of
A, x and some auxillary vectors, and saxpy, gaxpy, dot
algorithms � (�scalar a*x+y� , �general A*x+y�, �dot product�)

Classical methods: Jacobi, Gauss-Seidel, Gauss-Seidel SOR
and conjugate gradient.

Methods especially useful for tomographic problems:
Kaczmarz's method, ART (algebraic reconstruction technique).

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Yet Another Regularization Idea

To regularize in face of iteration:

Use the number of iteration steps taken as a regularization
parameter.

Conjugate gradient methods are designed to work with SPD
coe�cient matrices A in the equation Ax = b.

So in the unregularized least squares problem GTGm = GTd

take A = GTG and b = GTd, resulting in the CGLS method,
in which we avoid explicitly computing GTG .

Key fact: in exact arithmetic, if we start at m(0) = 0, then∥∥m(k)
∥∥ is monotone increasing in k and

∥∥Gm(k) − d
∥∥ is

monotonically decreasing in k . So we can make an L-curve in
terms of k .

Do Example 6.3 from the CD. Change startup�le path to
Examples/chap6/examp3Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Regularization...Sort Of

Basic Idea:

Use prior knowledge about the nature of the solution to restrict it:

Most common restrictions: on the magnitude of the parameter
values. Which leads to the problem:

Minimize f (m)
subject to l ≤ m ≤ u.

One could choose f (m) = ‖Gm− d‖2(BVLS)
One could choose f (m) = cT ·mwith additional constraint
‖Gm− d‖2 ≤ δ.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Example 3.3

Contaminant Transport

Let C (x , t) be the concentration of a pollutant at point x in a
linear stream, time t, where 0 ≤ x < ∞ and 0 ≤ t ≤ T . The
de�ning model

∂C

∂t
= D

∂2C

∂x2
− v

∂C

∂x
C (0, t) = Cin (t)

C (x , t) → 0, x →∞
C (x , 0) = C0 (x)



Solution

Solution:

In the case that C0 (x) ≡ 0, the explicit solution is

C (x ,T ) =

∫ T

0
Cin (t) f (x ,T − t) dt,

where

f (x , τ) =
x

2
√

πDτ3
e−(x−vτ)2/(4Dτ)



Inverse Problem

Problem:

Given simultaneous measurements at time T , to estimate the
contaminant in�ow history. That is, given data

di = C (xi ,T ) , i = 1, 2, . . . ,m,

to estimate
Cin (t) , 0 ≤ t ≤ T .

Change the startup�le path to Examples/chap7/examp1 execute it
and examp.
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A Better Idea (?)

Entropy:

E (m) = −
n∑

j=1

mj ln (wjmj), w a vector of positive weights.

Motivated by Shannon's information theory and Bolzmann's
theory of entropy in statistical mechanics. A measure of
uncertainty about which message or physical state will occur.

Shannon's entropy function for a probability distribution

{pi}ni=1 is H (p) = −
n∑

i=1

pi ln (pi ).

Bayesian Maximimum Entropy Principle: least biased model is
one that maximizes entropy subject to constraints of testable
information like bounds or average values of parameters.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Maximum Entropy Regularization

Maximize Entropy:

That is, our version. So problem looks like:

Maximize −
n∑

j=1

mj ln (wjmj)

Subject to ‖Gm− d‖2 ≤ δ and m ≥ 0.

In absence of extra information, take wi = 1. Lagrange
multipliers give:

Minimize ‖Gm− d‖22 + α2
n∑

j=1

mj ln (wjmj),

subject to m ≥ 0.

Change the startup�le path to Examples/chap7/examp2 execute it
and examp.
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TV Regularization

We only consider total variation regularization from this section.

Regularization term:

DV (m) =
n−1∑
j=1

|mj+1 −mj | = ‖Lm‖1, where L is the matrix used in

�rst order Tikhonov regularization.

Problem becomes: minimize ‖Gm− d‖22 + α ‖m‖1
Better yet: minimize ‖Gm− d‖1 + α ‖m‖1.

Equivalently: minimize

∥∥∥∥[
G

αL

]
m−

[
d

0

]∥∥∥∥
1
.

Now just use IRLS (iteratively reweighted least squares) to
solve it and an L-curve of sorts to �nd optimal α.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Regularization term:

DV (m) =
n−1∑
j=1

|mj+1 −mj | = ‖Lm‖1, where L is the matrix used in

�rst order Tikhonov regularization.

Problem becomes: minimize ‖Gm− d‖22 + α ‖m‖1
Better yet: minimize ‖Gm− d‖1 + α ‖m‖1.

Equivalently: minimize

∥∥∥∥[
G

αL

]
m−

[
d

0

]∥∥∥∥
1
.

Now just use IRLS (iteratively reweighted least squares) to
solve it and an L-curve of sorts to �nd optimal α.
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Total Variation

Key Property:

TV doesn't smooth discontinuities as much as Tikhonov
regularization.

Change startup�le path to Examples/chap7/examp3 execute it and
examp.
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Basic Problems

Root Finding:

Solve the system of equations represented in vector form as

F (x) = 0.

for point(s) x∗ for which F (x∗) = 0.

Here F (x) = (f1 (x) , . . . , fm (x)) and x = (x1, . . . , xm)

Gradient notation: ∇fj (x) =

(
∂fj
∂x1

(x) , . . . ,
∂fj
∂xm

(x)

)
.

Jacobian notation:

∇F (x) = [∇f1 (x) , . . . ,∇fm (x)]T =

[
∂fi
∂xj

]
i ,j=1,...m

.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Basic Problems

Optimization:

Find the minimum value of scalar valued function f (x), where x
ranges over a feasible set Ω.

Set F (x) = ∇f (x) =

(
∂f

∂x1
(x) , . . . ,

∂f

∂xm
(x)

)
Hessian of f : ∇ (∇f (x)) ≡ ∇2f (x) =

[
∂2f

∂xi∂xj

]
.
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Taylor Theorems

First Order

Suppose that f : Rn → R has continuous second partials and
x∗, x ∈ Rn. Then

f (x) = f (x∗) +∇f (x∗)T (x− x∗) +O
(
‖x− x∗‖2

)
, x→ x.

Second Order

Suppose that f : Rn → R has continuous third partials and
x∗, x ∈ Rn. Then f (x) = f (x∗) +∇f (x∗)T (x− x∗) +
1

2
(x− x∗)T ∇2f (x∗) (x− x∗) +O

(
‖x− x∗‖3

)
, x→ x.

(See Appendix C for versions of Taylor's theorem with weaker
hypotheses.)

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



Chapter 6: Iterative Methods � A Brief DiscussionChapter 7: Additional Regularization TechniquesChapter 9: Nonlinear Regression
Newton's MethodGauss-Newton and Levenberg-Marquardt Methods

Taylor Theorems

First Order

Suppose that f : Rn → R has continuous second partials and
x∗, x ∈ Rn. Then

f (x) = f (x∗) +∇f (x∗)T (x− x∗) +O
(
‖x− x∗‖2

)
, x→ x.

Second Order

Suppose that f : Rn → R has continuous third partials and
x∗, x ∈ Rn. Then f (x) = f (x∗) +∇f (x∗)T (x− x∗) +
1

2
(x− x∗)T ∇2f (x∗) (x− x∗) +O

(
‖x− x∗‖3

)
, x→ x.

(See Appendix C for versions of Taylor's theorem with weaker
hypotheses.)

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



Chapter 6: Iterative Methods � A Brief DiscussionChapter 7: Additional Regularization TechniquesChapter 9: Nonlinear Regression
Newton's MethodGauss-Newton and Levenberg-Marquardt Methods

Newton Algorithms

Root Finding

Input F, ∇F, x0, Nmax
for k = 0, ...,Nmax

xk+1 = xk −∇F
(
xk

)−1
F

(
xk

)
if xk+1, xk pass a convergence test
return(xk)

end
end
return(xNmax )

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



Convergence Result

Theorem

Let x∗ be a root of the equation F (x) = 0, where F, x are

m-vectors, F has continuous �rst partials in some neighborhood of

x∗ and ∇F (x∗) is non-singular. Then Newton's method yields a

sequence of vectors that converges to x∗, provided that x0 is

su�ciently close to x∗. If, in addition, F has continuous second

partials in some neighborhood of x∗, then the convergence is

quadratic in the sense that for some constant K > 0,∥∥∥xk+1 − x∗
∥∥∥ ≤ K

∥∥∥xk − x∗
∥∥∥2 .
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Newton for Optimization

Bright Idea:

We know from calculus that where f (x) has a local minimum,
∇f = 0. So just let F (x) = ∇f (x) and use Newton's method.

Result is iteration formula: xk+1 = xk −∇2f
(
xk

)−1∇f
(
xk

)
We can turn this approach on its head: root �nding is just a
special case of optimization, i.e., solving F (x) = 0 is the same
as minimizing f (x) = ‖F (x)‖2.
Downside of root �nding point of view of optimization: saddle
points and local maxima x also satisfy ∇f (x) = 0.

Upside of optimization view of root �nding: if F (x) = 0

doesn't have a root, minimizing f (x) = ‖F (x)‖2 �nds the
next best solutions � least squares solutions!

In fact, least squares problem for‖Gm− d‖2 is optimization!

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Remarks on Newton

About Newton:

This barely scratches the surface of optimization theory (take Math
4/833 if you can!!).

Far from a zero, Newton does not exhibit quadratic
convergence. It is accelerated by a line search in the Newton

direction −∇F
(
xk

)−1
F

(
xk

)
for a point that (approximately)

minimizes a merit function like m (x) = ‖F (x)‖2.
Optimization is NOT a special case of root �nding. There are
special characteristics of the min f (x) problem that get lost if
one only tries to �nd a zero of ∇f .

For example, −∇f is a search direction that leads to the
method of steepest descent. This is not terribly e�cient, but
well understood.

There is an automatic merit function, namely f (x), in any
search direction. Using this helps avoid saddle points, maxima.
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Gauss-Newton and Levenberg-Marquardt

The Problem:

Given a function F (x) = (f1 (x) , . . . , fm (x)), minimize

f (x) =
m∑

k=0

fk (x)2 = ‖F (x)‖2.

Newton's method can be very expensive, due to derivative
evaluations.

For starters, one shows ∇f (x) = 2 (∇F (x))T F (x)

Then, ∇2f (x) = 2 (∇F (x))T ∇F (x) + Q (x), where
Q (x)contains all the second derivatives.
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Comment 5.
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