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Regularization...Sort Of

Basic Idea:

Use prior knowledge about the nature of the solution to restrict it:

Most common restrictions: on the magnitude of the parameter
values. Which leads to the problem:

Minimize f (m)
subject to l ≤ m ≤ u.

One could choose f (m) = ‖Gm− d‖2(BVLS)
One could choose f (m) = cT ·mwith additional constraint
‖Gm− d‖2 ≤ δ.
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Example 3.3

Contaminant Transport

Let C (x , t) be the concentration of a pollutant at point x in a
linear stream, time t, where 0 ≤ x < ∞ and 0 ≤ t ≤ T . The
de�ning model

∂C

∂t
= D

∂2C

∂x2
− v

∂C

∂x
C (0, t) = Cin (t)

C (x , t) → 0, x →∞
C (x , 0) = C0 (x)



Solution

Solution:

In the case that C0 (x) ≡ 0, the explicit solution is

C (x ,T ) =

∫ T

0

Cin (t) f (x ,T − t) dt,

where

f (x , τ) =
x

2
√

πDτ3
e−(x−vτ)2/(4Dτ)



Inverse Problem

Problem:

Given simultaneous measurements at time T , to estimate the
contaminant in�ow history. That is, given data

di = C (xi ,T ) , i = 1, 2, . . . ,m,

to estimate
Cin (t) , 0 ≤ t ≤ T .

Change the startup�le path to Examples/chap7/examp1 execute it
and examp.
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A Better Idea (?)

Entropy:

E (m) = −
n∑

j=1

mj ln (wjmj), w a vector of positive weights.

Motivated by Shannon's information theory and Bolzmann's
theory of entropy in statistical mechanics. A measure of
uncertainty about which message or physical state will occur.

Shannon's entropy function for a probability distribution

{pi}ni=1 is H (p) = −
n∑

i=1

pi ln (pi ).

Bayesian Maximimum Entropy Principle: least biased model is
one that maximizes entropy subject to constraints of testable
information like bounds or average values of parameters.
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Maximum Entropy Regularization

Maximize Entropy:

That is, our version. So problem looks like:

Maximize −
n∑

j=1

mj ln (wjmj)

Subject to ‖Gm− d‖2 ≤ δ and m ≥ 0.

In absence of extra information, take wi = 1. Lagrange
multipliers give:

Minimize ‖Gm− d‖22 + α2
n∑

j=1

mj ln (wjmj),

subject to m ≥ 0.

Change the startup�le path to Examples/chap7/examp2 execute it
and examp.
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TV Regularization

We only consider total variation regularization from this section.

Regularization term:

DV (m) =
n−1∑
j=1

|mj+1 −mj | = ‖Lm‖1, where L is the matrix used in

�rst order Tikhonov regularization.

Problem becomes: minimize ‖Gm− d‖22 + α ‖m‖1
Better yet: minimize ‖Gm− d‖1 + α ‖m‖1.

Equivalently: minimize

∥∥∥∥[
G

αL

]
m−

[
d

0

]∥∥∥∥
1

.

Now just use IRLS (iteratively reweighted least squares) to
solve it and an L-curve of sorts to �nd optimal α.
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Total Variation

Key Property:

TV doesn't smooth discontinuities as much as Tikhonov
regularization.

Change startup�le path to Examples/chap7/examp3 execute it and
examp.
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Basic Problem:

Solve the system of equations represented in vector form as

F (x) = 0.

Here F (x) = (F1 (x) , . . . ,Fm (x)) and x = (x1, . . . , xm).

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



Chapter 7: Additional Regularization TechniquesChapter 9: Nonlinear Regression Newton's Method

Basic Problem:

Solve the system of equations represented in vector form as

F (x) = 0.

Here F (x) = (F1 (x) , . . . ,Fm (x)) and x = (x1, . . . , xm).

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory


