Math 4/896: Seminar in Mathematics Topic: Inverse Theory

Instructor: Thomas Shores Department of Mathematics

Lecture 24, April 11, 2006 AvH 10

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.5: Total Variation

Outline

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

Basic Idea:

- Most common restrictions: on the magnitude of the parameter values. Which leads to the problem:
- Minimize $f(\mathbf{m})$ subject to $l \le m \le u$.
- One could choose $f(\mathbf{m}) = \|G\mathbf{m} \mathbf{d}\|_2(\mathsf{BVLS})$
- One could choose $f(\mathbf{m}) = \mathbf{c}^T \cdot \mathbf{m}$ with additional constraint $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$.

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

Basic Idea:

- Most common restrictions: on the magnitude of the parameter values. Which leads to the problem:
- Minimize $f(\mathbf{m})$ subject to $l \le m \le u$.
- One could choose $f(\mathbf{m}) = \|G\mathbf{m} \mathbf{d}\|_2(\mathsf{BVLS})$
- One could choose $f(\mathbf{m}) = \mathbf{c}^T \cdot \mathbf{m}$ with additional constraint $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$.

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
 - .2: Maximum Entropy Regula

Basic Idea:

- Most common restrictions: on the magnitude of the parameter values. Which leads to the problem:
- Minimize $f(\mathbf{m})$ subject to $l \le m \le u$.
- One could choose $f(\mathbf{m}) = \|G\mathbf{m} \mathbf{d}\|_2(\mathsf{BVLS})$
- One could choose $f(\mathbf{m}) = \mathbf{c}^T \cdot \mathbf{m}$ with additional constraint $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$.

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
 - .2: Maximum Entropy Regula

Basic Idea:

- Most common restrictions: on the magnitude of the parameter values. Which leads to the problem:
- Minimize $f(\mathbf{m})$ subject to $l \le m \le u$.
- One could choose $f(\mathbf{m}) = \|G\mathbf{m} \mathbf{d}\|_2(\mathsf{BVLS})$
- One could choose $f(\mathbf{m}) = \mathbf{c}^T \cdot \mathbf{m}$ with additional constraint $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$.

7.3: Total Variation

Regularization...Sort Of

Basic Idea:

- Most common restrictions: on the magnitude of the parameter values. Which leads to the problem:
- Minimize $f(\mathbf{m})$ subject to $l \le m \le u$.
- One could choose $f(\mathbf{m}) = \|G\mathbf{m} \mathbf{d}\|_2(BVLS)$
- One could choose $f(\mathbf{m}) = \mathbf{c}^T \cdot \mathbf{m}$ with additional constraint $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$.

Example 3.3

Contaminant Transport

Let C(x,t) be the concentration of a pollutant at point x in a linear stream, time t, where $0 \le x < \infty$ and $0 \le t \le T$. The defining model

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - v \frac{\partial C}{\partial x}$$

$$C(0,t) = C_{in}(t)$$

$$C(x,t) \to 0, x \to \infty$$

$$C(x,0) = C_0(x)$$

Solution:

In the case that $C_0(x) \equiv 0$, the explicit solution is

$$C(x,T) = \int_0^T C_{in}(t) f(x,T-t) dt,$$

where

$$f(x,\tau) = \frac{x}{2\sqrt{\pi D\tau^3}} e^{-(x-v\tau)^2/(4D\tau)}$$

Inverse Problem

Problem:

Given simultaneous measurements at time \mathcal{T} , to estimate the contaminant inflow history. That is, given data

$$d_i = C(x_i, T), i = 1, 2, ..., m,$$

to estimate

$$C_{in}(t), 0 \le t \le T.$$

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
 - 7.3: Total Variation

Outline

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
 - .3: Total Variation

Entropy:

$$E(\mathbf{m}) = -\sum_{j=1}^{n} m_j \ln(w_j m_j)$$
, **w** a vector of positive weights.

- Motivated by Shannon's information theory and Bolzmann's theory of entropy in statistical mechanics. A measure of uncertainty about which message or physical state will occur.
- Shannon's entropy function for a probability distribution

$$\{p_i\}_{i=1}^n \text{ is } H(\mathbf{p}) = -\sum_{i=1}^n p_i \ln(p_i).$$

- 7.1: Using Bounds as Constraints
 - .2: Maximum Entropy Regularization

Entropy:

$$E(\mathbf{m}) = -\sum_{j=1}^{n} m_j \ln(w_j m_j)$$
, **w** a vector of positive weights.

- Motivated by Shannon's information theory and Bolzmann's theory of entropy in statistical mechanics. A measure of uncertainty about which message or physical state will occur.
- Shannon's entropy function for a probability distribution

$$\{p_i\}_{i=1}^n \text{ is } H(\mathbf{p}) = -\sum_{i=1}^n p_i \ln(p_i).$$

- 7.1: Using Bounds as Constraints
 - .2: Maximum Entropy Regularization

Entropy:

$$E(\mathbf{m}) = -\sum_{j=1}^{n} m_j \ln(w_j m_j)$$
, **w** a vector of positive weights.

- Motivated by Shannon's information theory and Bolzmann's theory of entropy in statistical mechanics. A measure of uncertainty about which message or physical state will occur.
- Shannon's entropy function for a probability distribution

$$\{p_i\}_{i=1}^n \text{ is } H(\mathbf{p}) = -\sum_{i=1}^n p_i \ln(p_i).$$

- 7.1: Using Bounds as Constraints
 - 7.2: Maximum Entropy Regularization

Entropy:

$$E(\mathbf{m}) = -\sum_{j=1}^{n} m_j \ln(w_j m_j)$$
, **w** a vector of positive weights.

- Motivated by Shannon's information theory and Bolzmann's theory of entropy in statistical mechanics. A measure of uncertainty about which message or physical state will occur.

$$\{p_i\}_{i=1}^n \text{ is } H(\mathbf{p}) = -\sum_{i=1}^n p_i \ln(p_i).$$

Maximize Entropy:

That is, our version. So problem looks like:

• Maximize
$$-\sum_{j=1}^{n} m_j \ln (w_j m_j)$$

- Subject to $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$ and $\mathbf{m} \ge \mathbf{0}$.
- In absence of extra information, take $w_i = 1$. Lagrange multipliers give:
- Minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \sum_{j=1}^n m_j \ln(w_j m_j)$,
- ullet subject to $m \geq 0$

Maximize Entropy:

That is, our version. So problem looks like:

- Maximize $-\sum_{j=1}^{n} m_j \ln(w_j m_j)$
- Subject to $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$ and $\mathbf{m} \ge \mathbf{0}$.
- In absence of extra information, take $w_i = 1$. Lagrange multipliers give:
- Minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \sum_{j=1}^n m_j \ln(w_j m_j)$,
- ullet subject to ${\sf m} \geq {\sf 0}$

Maximize Entropy:

That is, our version. So problem looks like:

- Maximize $-\sum_{j=1}^{n} m_j \ln (w_j m_j)$
- Subject to $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$ and $\mathbf{m} \ge \mathbf{0}$.
- In absence of extra information, take $w_i = 1$. Lagrange multipliers give:
- Minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \sum_{j=1}^n m_j \ln(w_j m_j)$,
- subject to $m \ge 0$

Maximize Entropy:

That is, our version. So problem looks like:

- Maximize $-\sum_{j=1}^{n} m_j \ln (w_j m_j)$
- Subject to $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$ and $\mathbf{m} \ge \mathbf{0}$.
- In absence of extra information, take $w_i = 1$. Lagrange multipliers give:
- Minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \sum_{j=1}^n m_j \ln(w_j m_j)$,
- subject to $m \ge 0$.

Maximize Entropy:

That is, our version. So problem looks like:

- Maximize $-\sum_{j=1}^{n} m_j \ln(w_j m_j)$
- Subject to $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$ and $\mathbf{m} \ge \mathbf{0}$.
- In absence of extra information, take $w_i = 1$. Lagrange multipliers give:
- Minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \sum_{j=1}^n m_j \ln(w_j m_j)$,
- subject to $m \ge 0$

Maximize Entropy:

That is, our version. So problem looks like:

- Maximize $-\sum_{j=1}^{n} m_j \ln(w_j m_j)$
- Subject to $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$ and $\mathbf{m} \ge \mathbf{0}$.
- In absence of extra information, take $w_i = 1$. Lagrange multipliers give:
- Minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \sum_{j=1}^n m_j \ln(w_j m_j)$,
- subject to $m \ge 0$.

Outline

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

We only consider total variation regularization from this section.

Regularization term:

$$\mathsf{DV}\left(\mathbf{m}\right) = \sum_{j=1}^{n-1} |m_{j+1} - m_j| = \|L\mathbf{m}\|_1$$
, where L is the matrix used in

- Problem becomes: minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha \|\mathbf{m}\|_1$
- Better yet: minimize $\|\mathbf{G}\mathbf{m} \mathbf{d}\|_1 + \alpha \|\mathbf{m}\|_1$.
- Equivalently: minimize $\left\| \begin{bmatrix} G \\ \alpha L \end{bmatrix} \mathbf{m} \begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix} \right\|_{1}$.
- Now just use IRLS (iteratively reweighted least squares) to solve it and an L-curve of sorts to find optimal α .

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

We only consider total variation regularization from this section.

Regularization term:

$$\mathsf{DV}\left(\mathbf{m}\right) = \sum_{j=1}^{n-1} |m_{j+1} - m_j| = \|L\mathbf{m}\|_1$$
, where L is the matrix used in

- ullet Problem becomes: minimize $\| \mathcal{G} \mathbf{m} \mathbf{d} \|_2^2 + \alpha \| \mathbf{m} \|_1$
- Better yet: minimize $\|\mathbf{G}\mathbf{m} \mathbf{d}\|_1 + \alpha \|\mathbf{m}\|_1$.
- Equivalently: minimize $\left\| \begin{bmatrix} G \\ \alpha L \end{bmatrix} \mathbf{m} \begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix} \right\|_{1}$.
- Now just use IRLS (iteratively reweighted least squares) to solve it and an L-curve of sorts to find optimal α .

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

We only consider total variation regularization from this section.

Regularization term:

$$\mathsf{DV}\left(\mathbf{m}\right) = \sum_{j=1}^{n-1} |m_{j+1} - m_j| = \|L\mathbf{m}\|_1, \text{ where } L \text{ is the matrix used in}$$

first order Tikhonov regularization.

- ullet Problem becomes: minimize $\| \mathbf{G} \mathbf{m} \mathbf{d} \|_2^2 + \alpha \| \mathbf{m} \|_1$
- $\bullet \ \ \text{Better yet: minimize} \ \| \operatorname{Gm} \mathbf{d} \|_1 + \alpha \, \| \mathbf{m} \|_1.$

• Equivalently: minimize
$$\left\| \begin{bmatrix} G \\ \alpha L \end{bmatrix} \mathbf{m} - \begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix} \right\|_{1}$$
.

• Now just use IRLS (iteratively reweighted least squares) to solve it and an L-curve of sorts to find optimal α .

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

We only consider total variation regularization from this section.

Regularization term:

$$\mathsf{DV}\left(\mathbf{m}\right) = \sum_{j=1}^{n-1} |m_{j+1} - m_j| = \|L\mathbf{m}\|_1, \text{ where } L \text{ is the matrix used in}$$

- ullet Problem becomes: minimize $\| \mathbf{G} \mathbf{m} \mathbf{d} \|_2^2 + \alpha \| \mathbf{m} \|_1$
- $\bullet \ \ \text{Better yet: minimize} \ \|\textit{G}\,\mathbf{m} \mathbf{d}\|_1 + \alpha \, \|\mathbf{m}\|_1.$
- Equivalently: minimize $\left\| \begin{bmatrix} G \\ \alpha L \end{bmatrix} \mathbf{m} \begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix} \right\|_{1}$.
- Now just use IRLS (iteratively reweighted least squares) to solve it and an L-curve of sorts to find optimal α .

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

We only consider total variation regularization from this section.

Regularization term:

$$\mathsf{DV}\left(\mathbf{m}\right) = \sum_{j=1}^{n-1} |m_{j+1} - m_j| = \|L\mathbf{m}\|_1, \text{ where } L \text{ is the matrix used in}$$

- ullet Problem becomes: minimize $\| \mathbf{G} \mathbf{m} \mathbf{d} \|_2^2 + \alpha \| \mathbf{m} \|_1$
- $\bullet \ \, \text{Better yet: minimize} \, \left\| \textit{G}\,\mathbf{m} \mathbf{d} \right\|_1 + \alpha \left\| \mathbf{m} \right\|_1.$
- Equivalently: minimize $\left\| \begin{bmatrix} G \\ \alpha L \end{bmatrix} \mathbf{m} \begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix} \right\|_{1}$.
- Now just use IRLS (iteratively reweighted least squares) to solve it and an L-curve of sorts to find optimal α .

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

We only consider total variation regularization from this section.

Regularization term:

$$\mathsf{DV}\left(\mathbf{m}\right) = \sum_{j=1}^{n-1} |m_{j+1} - m_j| = \|L\mathbf{m}\|_1$$
, where L is the matrix used in

- ullet Problem becomes: minimize $\| \mathbf{G} \mathbf{m} \mathbf{d} \|_2^2 + \alpha \| \mathbf{m} \|_1$
- $\bullet \ \ \text{Better yet: minimize} \ \|\textit{G}\,\mathbf{m} \mathbf{d}\|_1 + \alpha \, \|\mathbf{m}\|_1.$
- Equivalently: minimize $\left\| \begin{bmatrix} G \\ \alpha L \end{bmatrix} \mathbf{m} \begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix} \right\|_{1}$.
- Now just use IRLS (iteratively reweighted least squares) to solve it and an L-curve of sorts to find optimal α .

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

Total Variation

Key Property:

 TV doesn't smooth discontinuities as much as Tikhonov regularization.

- 7.1: Using Bounds as Constraints
 7.2: Maximum Entropy Regularization
- 7.3: Total Variation

Total Variation

Key Property:

 TV doesn't smooth discontinuities as much as Tikhonov regularization.

Outline

Basic Problem:

Solve the system of equations represented in vector form as

$$F(x) = 0.$$

• Here
$$F(x) = (F_1(x), ..., F_m(x))$$
 and $x = (x_1, ..., x_m)$.

Basic Problem:

Solve the system of equations represented in vector form as

$$F(x) = 0.$$

• Here $F(x) = (F_1(x), ..., F_m(x))$ and $x = (x_1, ..., x_m)$.