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Key Idea: Generalized SVD (GSVD)

Theorem

Let G be an m × n matrix and L a p × n matrix. Then there exist

m ×m orthogonal U, p × p orthogonal V and n × n nonsingular

matrix X with m ≥ n ≥ min {p, n} = q such that

UTGX = diag {λ1, λ2, . . . , λn} = Λ = Λm,n

V TLX = diag {µ1, µ2, . . . , µq} = M = Mp,n

ΛTΛ + MTM = 1.

Also 0 ≤ λ1 ≤ λ2 · · · ≤ λn ≤ 1 and 1 ≥ µ1 ≥ µ2 · · · ≥ µq ≥ 0.
The numbers γi = λi/µi , i = 1, . . . , rank (L) ≡ r are called the

generalized singular values of G and L and 0 ≤ γ1 ≤ γ2 · · · ≤ γr .



Application to Higher Order Regularization

The minimization problem is equivalent to the problem(
GTG + α2LTL

)
m = GTd

which has solution forms

mα,L =

p∑
j=1

γ2
j

γ2
j + α2

(
UT

j d
)

λj
Xj +

n∑
j=p+1

(
UT

j d
)
Xj

Filter factors: fj =
γ2
j

γ2
j + α2 , j = 1, . . . , p, fj = 1, j = p + 1, . . . , n.

Thus

mα,L =
n∑

j=1

fj

(
UT

j d
)

λj
Xj .
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Vertical Seismic Pro�ling Example

The Experiment:

Place sensors at vertical depths zj , j = 1, . . . , n, in a borehole,
then:

Generate a seizmic wave at ground level, t = 0.

Measure arrival times dj = t (zj), j = 1, . . . , n.

Now try to recover the slowness function s (z), given

t (z) =

∫ z

0
s (ξ) dξ =

∫ ∞

0
s (ξ)H (z − ξ) dξ

It should be easy: s (z) = t ′ (z).

Hmmm.....or is it?

Do Example 5.4-5.5 from the CD.
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Model Resolution

Model Resolution Matrix:

As usual, Rm,α,L = G \G .

We can show this is XFX−1.
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TGSVD:

We have seen this idea before. Simply apply it to formula above,
remembering that the generalized singular values are reverse
ordered.

Formula becomes

mα,L =

p∑
j=k

γ2
j

γ2
j + α2

(
UT

j d
)

cj
Xj +

n∑
j=p+1

(
UT

j d
)
Xj

Key question: where to start k .
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GCV

Basic Idea:

Comes from statistical �leave-one-out� cross validation.

Leave out one data point and use model to predict it.

Sum these up and choose regularization parameter α that
minimizes the sum of the squares of the predictive errors

V0 (α) =
1

m

m∑
k=1

((
Gm

[k]
α,L

)
k
− dk

)2
.

One can show a good approximation is

V0 (α) =
m ‖Gmα − d‖2
Tr (I − GG \)

2

Example 5.6-7 gives a nice illustration of the ideas. Use the CD
script to explore it. Change the startup�le path to
Examples/chap5/examp6, then examp7.
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Error Bounds

Error Estimates:

They exist, even in the hard cases where there is error in both G

and d .

In the simpler case, G known exactly, they take the form

‖mα − m̃α‖2
‖mα‖2

≤ κα

∥∥∥d− d̃

∥∥∥
2

‖Gmα‖2

where κα is inversely proportional to α.
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Error Bounds

More Estimates:

Suppose that the true model mtrue is �smooth� in the sense
that there exists vector w such that (p = 1) mtrue = GTw or
(p = 2) mtrue = GTGw. Let ∆ = δ/ ‖w‖ and γ = 1 if p = 1

and γ = 4 if p = 2. Then the choice α̂ = (∆/γ)1/(p+1) is
optimal in the sense that we have the error bound∥∥∥mtrue − G \d

∥∥∥
2

= γ (p + 1) α̂p = O
(
∆

p

p+1
)

.

This is about the best we can do. Its signi�cance: the best we
can hope for is about 1/2 or 2/3 of the signi�cant digits in the
data.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



Chapter 5: Tikhonov RegularizationChapter 6: Iterative Methods � A Brief DiscussionChapter 7: Additional Regularization Techniques
TGSVD and GCVError Bounds

Error Bounds

More Estimates:

Suppose that the true model mtrue is �smooth� in the sense
that there exists vector w such that (p = 1) mtrue = GTw or
(p = 2) mtrue = GTGw. Let ∆ = δ/ ‖w‖ and γ = 1 if p = 1

and γ = 4 if p = 2. Then the choice α̂ = (∆/γ)1/(p+1) is
optimal in the sense that we have the error bound∥∥∥mtrue − G \d

∥∥∥
2

= γ (p + 1) α̂p = O
(
∆

p

p+1
)

.

This is about the best we can do. Its signi�cance: the best we
can hope for is about 1/2 or 2/3 of the signi�cant digits in the
data.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



Chapter 5: Tikhonov RegularizationChapter 6: Iterative Methods � A Brief DiscussionChapter 7: Additional Regularization Techniques
TGSVD and GCVError Bounds

Error Bounds

More Estimates:

Suppose that the true model mtrue is �smooth� in the sense
that there exists vector w such that (p = 1) mtrue = GTw or
(p = 2) mtrue = GTGw. Let ∆ = δ/ ‖w‖ and γ = 1 if p = 1

and γ = 4 if p = 2. Then the choice α̂ = (∆/γ)1/(p+1) is
optimal in the sense that we have the error bound∥∥∥mtrue − G \d

∥∥∥
2

= γ (p + 1) α̂p = O
(
∆

p

p+1
)

.

This is about the best we can do. Its signi�cance: the best we
can hope for is about 1/2 or 2/3 of the signi�cant digits in the
data.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



Chapter 5: Tikhonov RegularizationChapter 6: Iterative Methods � A Brief DiscussionChapter 7: Additional Regularization Techniques

Image Recovery

Problem:

An image is blurred and we want to sharpen it. Let intensity
function Itrue (x , y)de�ne the true image and Iblurred (x , y) de�ne
the blurred image.

A typical model results from convolving true image with
Gaussian point spread function

Iblurred (x , y) =

∫ ∞

−∞

∫ ∞

−∞
Itrue (x − u, y − v) Ψ (u, v) du dv

where Ψ(u, v) = e−(u2+v2)/(2σ2).
Think about discretizing this over an SVGA image
(1024× 768).

But the discretized matrix should be sparse!
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Sparse Matrices and Iterative Methods

Sparse Matrix:

A matrix with su�ciently many zeros that we should pay attention
to them.

There are e�cient ways of storing such matrices and doing
linear algebra on them.

Given a problem Ax = b with A sparse, iterative methods
become attractive because they usually only require storage of
A, x and some auxillary vectors, and saxpy, gaxpy, dot
algorithms � (�scalar a*x+y� , �general A*x+y�, �dot product�)

Classical methods: Jacobi, Gauss-Seidel, Gauss-Seidel SOR
and conjugate gradient.

Methods especially useful for tomographic problems:
Kaczmarz's method, ART (algebraic reconstruction technique).

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Yet Another Regularization Idea

To regularize in face of iteration:

Use the number of iteration steps taken as a regularization
parameter.

Conjugate gradient methods are designed to work with SPD
coe�cient matrices A in the equation Ax = b.

So in the unregularized least squares problem GTGm = GTd

take A = GTG and b = GTd, resulting in the CGLS method,
in which we avoid explicitly computing GTG .

Key fact: in exact arithmetic, if we start at m(0) = 0, then∥∥m(k)
∥∥ is monotone increasing in k and

∥∥Gm(k) − d
∥∥ is

monotonically decreasing in k . So we can make an L-curve in
terms of k .

Do Example 6.3 from the CD. Change startup�le path to
Examples/chap6/examp3
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Regularization...Sort Of

Basic Idea:

Use prior knowledge about the nature of the solution to restrict it:

Most common restrictions: on the magnitude of the parameter
values. Which leads to the problem:

Minimize f (m)
subject to l ≤ m ≤ u.

One could choose f (m) = ‖Gm− d‖2(BVLS)
One could choose f (m) = cT ·mwith additional constraint
‖Gm− d‖2 ≤ δ.
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