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Key Idea: Generalized SVD (GSVD)

Theorem

Let G be an m x n matrix and L a p X n matrix. Then there exist
m x m orthogonal U, p x p orthogonal VV and n x n nonsingular
matrix X with m > n > min {p,n} = q such that

UTGX = diag{\i, 2., At =A=Am,
VTLX = diag{p, p2,- . pgt =M= M,,
ANMA+MTM = 1.

A/SOOS)\l S)\2"'§>\n§1 andlz,ul Z,uz-“Z,quO.
The numbers ~; = \j/pi, i =1,...,rank (L) = r are called the
generalized singular values of G and L and 0 < v < yp -+ < ~,.




Application to Higher Order Regularization

The minimization problem is equivalent to the problem
(676 +a2TL)m=6"d

which has solution forms

maL—Z 2+a2( J. >x + Z (u7d)x;

j=p+1
Filter factors: ,5.277127]'_1 p =1 j=p+1,...,n
“YJ ta
Thus
. (Ufd)
mmL—Zﬂ- / Xj.




Chapter 5: Tikhonov Regularization TGSVD and GCV

Error Bounds

Vertical Seismic Profiling Example

The Experiment:

Place sensors at vertical depths zj, j = 1,...,n, in a borehole,
then:

Do Example 5.4-5.5 from the CD.
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Vertical Seismic Profiling Example

The Experiment:

Place sensors at vertical depths zj, j = 1,...,n, in a borehole,
then:

@ Generate a seizmic wave at ground level, t = 0.

© Measure arrival times d; = t(z), j=1,...,n.
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Error Bounds

Vertical Seismic Profiling Example

The Experiment:

Place sensors at vertical depths zj, j = 1,...,n, in a borehole,
then:

@ Generate a seizmic wave at ground level, t = 0.
© Measure arrival times d; = t(z), j=1,...,n.

@ Now try to recover the slowness function s(z), given

t(z):/Ozs(f)dgz/ooos(g)H(z—g)dg

Do Example 5.4-5.5 from the CD.
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then:
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© Measure arrival times d; = t(z), j=1,...,n.

@ Now try to recover the slowness function s(z), given

t(z):/Ozs(f)dgz/ooos(g)H(z—g)dg

o It should be easy: s(z) =t/ (2).

Do Example 5.4-5.5 from the CD.
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Error Bounds

Vertical Seismic Profiling Example

The Experiment:

Place sensors at vertical depths zj, j = 1,...,n, in a borehole,
then:

@ Generate a seizmic wave at ground level, t = 0.
© Measure arrival times d; = t(z), j=1,...,n.

@ Now try to recover the slowness function s(z), given

t(z):/Ozs(f)dgz/ooos(g)H(z—g)dg

o It should be easy: s(z) =t/ (2).

@ Hmmm.....or is it?

Do Example 5.4-5.5 from the CD.
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Error Bounds

Model Resolution

Model Resolution Matrix:
As usual, Rm o, = G'G.
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Error Bounds

Model Resolution

Model Resolution Matrix:
As usual, Rm o, = G'G.
@ We can show this is XFX 1.
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Chapter 5: onov Regularization TGSVD and GCV
Error Bounds

TGSV

We have seen this idea before. Simply apply it to formula above,
remembering that the generalized singular values are reverse
ordered.

@ Formula becomes

p 2 u’d n
> %21 - ( ch )xj +,-:z,,;1 (ude) X;

My =
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Error Bounds

Comes from statistical “leave-one-out” cross validation.

Example 5.6-7 gives a nice illustration of the ideas. Use the CD
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Error Bounds

Comes from statistical “leave-one-out” cross validation.
@ Leave out one data point and use model to predict it.

@ Sum these up and choose regularization parameter « that
minimizes the sum of the squares of the predictive errors

0= 5 (o), )’

Example 5.6-7 gives a nice illustration of the ideas. Use the CD
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Error Bounds

Comes from statistical “leave-one-out” cross validation.
@ Leave out one data point and use model to predict it.

@ Sum these up and choose regularization parameter « that
minimizes the sum of the squares of the predictive errors

0= 5 (o), )’

@ One can show a good approximation is

m||Gm, —d|,

e e

Example 5.6-7 gives a nice illustration of the ideas. Use the CD
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Error Bounds

Error Bounds

Error Estimates:

They exist, even in the hard cases where there is error in both G

and d.
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Error Bounds

Error Bounds

Error Estimates:

They exist, even in the hard cases where there is error in both G

and d.

@ In the simpler case, G known exactly, they take the form

44|

= « ‘

[mg, — r?‘chz

Imall

2

where k, is inversely proportional to a.
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Error Bounds
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Error Bounds

More Estimates:

@ Suppose that the true model my e is “smooth” in the sense
that there exists vector w such that (p = 1) mge = G w or
(p=2) Myye = GTGw. Let A=5/|jw|and y=1if p=1
and v = 4 if p=2. Then the choice & = (A/)Y/(P+1) s
optimal in the sense that we have the error bound

| mee — G2, =7 (p+ 1)8% = 0 (A7) .
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Error Bounds

Error Bounds

More Estimates:

@ Suppose that the true model my e is “smooth” in the sense
that there exists vector w such that (p = 1) mge = G w or
(p=2) Myye = GTGw. Let A=5/|jw|and y=1if p=1
and v = 4 if p=2. Then the choice & = (A/)Y/(P+1) s
optimal in the sense that we have the error bound

Hmtrue - GhdH2 = ’Y(P + 1)ap =0 (A#) .
@ This is about the best we can do. Its significance: the best we

can hope for is about 1/2 or 2/3 of the significant digits in the
data.
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Chapter 6: Iterative Methods — A Brief Discussion

Image Recovery

Problem:

An image is blurred and we want to sharpen it. Let intensity
function lipe (x, y)define the true image and lpjypreq (x,y) define
the blurred image.
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Chapter 6: Iterative Methods — A Brief Discussion

Image Recovery

Problem:
An image is blurred and we want to sharpen it. Let intensity
function lipe (x, y)define the true image and lpjypreq (x,y) define
the blurred image.
@ A typical model results from convolving true image with
Gaussian point spread function

o o
Ibturred (X, y) = / / ltrue (x — uyy — v) WV (u,v) dudv
—00 J —00

where W (u,v) = e~ (1+v?)/(20%)
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Image Recovery

Problem:
An image is blurred and we want to sharpen it. Let intensity
function lipe (x, y)define the true image and lpjypreq (x,y) define
the blurred image.
@ A typical model results from convolving true image with
Gaussian point spread function

o o
Ibturred (X, y) = / / ltrue (x — uyy — v) WV (u,v) dudv
—00 J —00

where W (u,v) = e~ (1+v?)/(20%)
@ Think about discretizing this over an SVGA image
(1024 x 768).
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Chapter 6: Iterative Methods — A Brief Discussion

Image Recovery

Problem:
An image is blurred and we want to sharpen it. Let intensity
function lipe (x, y)define the true image and lpjypreq (x,y) define
the blurred image.
@ A typical model results from convolving true image with
Gaussian point spread function

o o
Ibturred (X, y) = / / ltrue (x — uyy — v) WV (u,v) dudv
—00 J —00

where W (u,v) = e~ (1+v?)/(20%)

@ Think about discretizing this over an SVGA image
(1024 x 768).

@ But the discretized matrix should be sparse!
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Chapter 6: Iterative Methods — A Brief Discussion

Sparse Matrices and Iterative Methods

Sparse Matrix:

A matrix with sufficiently many zeros that we should pay attention
to them.
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linear algebra on them.
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Sparse Matrices and Iterative Methods

Sparse Matrix:

A matrix with sufficiently many zeros that we should pay attention
to them.

@ There are efficient ways of storing such matrices and doing
linear algebra on them.

@ Given a problem Ax = b with A sparse, iterative methods
become attractive because they usually only require storage of
A, x and some auxillary vectors, and saxpy, gaxpy, dot

algorithms — (“scalar a*x+y" , “general A*x+y", “dot product”)
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Sparse Matrices and Iterative Methods

Sparse Matrix:

A matrix with sufficiently many zeros that we should pay attention
to them.
@ There are efficient ways of storing such matrices and doing
linear algebra on them.
@ Given a problem Ax = b with A sparse, iterative methods
become attractive because they usually only require storage of
A, x and some auxillary vectors, and saxpy, gaxpy, dot
algorithms — (“scalar a*x+y" , “general A*x+y", “dot product”)
@ Classical methods: Jacobi, Gauss-Seidel, Gauss-Seidel SOR
and conjugate gradient.
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Chapter 6: Iterative Methods — A Brief Discussion

Sparse Matrices and Iterative Methods

Sparse Matrix:

A matrix with sufficiently many zeros that we should pay attention
to them.

@ There are efficient ways of storing such matrices and doing
linear algebra on them.

@ Given a problem Ax = b with A sparse, iterative methods
become attractive because they usually only require storage of
A, x and some auxillary vectors, and saxpy, gaxpy, dot
algorithms — (“scalar a*x+y" , “general A*x+y", “dot product”)

@ Classical methods: Jacobi, Gauss-Seidel, Gauss-Seidel SOR
and conjugate gradient.

@ Methods especially useful for tomographic problems:
Kaczmarz's method, ART (algebraic reconstruction technique).
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Chapter 6: Iterative Methods — A Brief Discussion

Yet Another Regularization Idea

To regularize in face of iteration:

Use the number of iteration steps taken as a regularization
parameter.

Do Example 6.3 from the CD. Change startupfile path to
Examples/chap6/examp3
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Yet Another Regularization Idea

To regularize in face of iteration:

Use the number of iteration steps taken as a regularization
parameter.
o Conjugate gradient methods are designed to work with SPD
coefficient matrices A in the equation Ax = b.
@ So in the unregularized least squares problem GTGm = G'd
take A= G’ G and b = G'd, resulting in the CGLS method,
in which we avoid explicitly computing G G.

Do Example 6.3 from the CD. Change startupfile path to
Examples/chap6/examp3
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Chapter 6: Iterative Methods — A Brief Discussion

Yet Another Regularization Idea

To regularize in face of iteration:

Use the number of iteration steps taken as a regularization
parameter.

o Conjugate gradient methods are designed to work with SPD
coefficient matrices A in the equation Ax = b.

@ So in the unregularized least squares problem GTGm = G'd
take A= G’ G and b = G'd, resulting in the CGLS method,
in which we avoid explicitly computing G G.

@ Key fact: in exact arithmetic, if we start at m©) = 0, then
Hm(k)H is monotone increasing in k and HGm(k) — d|| is
monotonically decreasing in k. So we can make an L-curve in
terms of k.

Do Example 6.3 from the CD. Change startupfile path to
Examples/chap6/examp3
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Chapter 7: Additional Regularization Techniques

Regularization...Sort Of

Use prior knowledge about the nature of the solution to restrict it:
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Chapter 7: Additional Regularization Techniques

Regularization...Sort Of

Use prior knowledge about the nature of the solution to restrict it:
@ Most common restrictions: on the magnitude of the parameter
values. Which leads to the problem:
@ Minimize f (m)
subject to I < m < u.
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7.1: Using Bounds as Constraints

Chapter 7: Additional Regularization Techniques

Regularization...Sort Of

Use prior knowledge about the nature of the solution to restrict it:

@ Most common restrictions: on the magnitude of the parameter
values. Which leads to the problem:

@ Minimize f (m)
subject to I < m < u.

@ One could choose f (m) = ||Gm —d||,(BVLS)

o One could choose f (m) =c” - mwith additional constraint
[Gm —dJ|; < 4.
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