# Math 4/896: Seminar in Mathematics <u>Topic: Inverse Theory</u>

Instructor: Thomas Shores Department of Mathematics

Lecture 23, April 6, 2006 AvH 10

# Key Idea: Generalized SVD (GSVD)

#### Theorem

Let G be an  $m \times n$  matrix and L a  $p \times n$  matrix. Then there exist  $m \times m$  orthogonal U,  $p \times p$  orthogonal V and  $n \times n$  nonsingular matrix X with  $m \ge n \ge \min\{p, n\} = q$  such that

$$\begin{array}{rcl} \boldsymbol{U}^T \boldsymbol{G} \boldsymbol{X} &=& \operatorname{diag} \left\{ \lambda_1, \lambda_2, \ldots, \lambda_n \right\} = \boldsymbol{\Lambda} = \boldsymbol{\Lambda}_{m,n} \\ \boldsymbol{V}^T \boldsymbol{L} \boldsymbol{X} &=& \operatorname{diag} \left\{ \mu_1, \mu_2, \ldots, \mu_q \right\} = \boldsymbol{M} = \boldsymbol{M}_{p,n} \\ \boldsymbol{\Lambda}^T \boldsymbol{\Lambda} + \boldsymbol{M}^T \boldsymbol{M} &=& 1. \end{array}$$

Also  $0 \le \lambda_1 \le \lambda_2 \cdots \le \lambda_n \le 1$  and  $1 \ge \mu_1 \ge \mu_2 \cdots \ge \mu_q \ge 0$ . The numbers  $\gamma_i = \lambda_i/\mu_i$ ,  $i = 1, \ldots, \operatorname{rank}(L) \equiv r$  are called the **generalized singular values** of G and L and  $0 \le \gamma_1 \le \gamma_2 \cdots \le \gamma_r$ .

# Application to Higher Order Regularization

The minimization problem is equivalent to the problem

$$\left(G^{T}G + \alpha^{2}L^{T}L\right)\mathbf{m} = G^{T}\mathbf{d}$$

which has solution forms

$$\mathbf{m}_{\alpha,L} = \sum_{j=1}^{p} \frac{\gamma_{j}^{2}}{\gamma_{j}^{2} + \alpha^{2}} \frac{\left(\mathbf{U}_{j}^{T}\mathbf{d}\right)}{\lambda_{j}} \mathbf{X}_{j} + \sum_{j=p+1}^{n} \left(\mathbf{U}_{j}^{T}\mathbf{d}\right) \mathbf{X}_{j}$$

Filter factors: 
$$f_j=rac{\gamma_j^2}{\gamma_i^2+lpha^2},\,j=1,\ldots,p,\,f_j=1,\,j=p+1,\ldots,n.$$

Thus

$$\mathbf{m}_{\alpha,L} = \sum_{j=1}^{n} f_{j} \frac{\left(\mathbf{U}_{j}^{\mathsf{T}} \mathbf{d}\right)}{\lambda_{j}} \mathbf{X}_{j}.$$



### The Experiment:

Place sensors at vertical depths  $z_j$ , j = 1, ..., n, in a borehole, then:

- Generate a seizmic wave at ground level, t=0.
- Measure arrival times  $d_i = t(z_i), j = 1, ..., n$ .
- Now try to recover the slowness function s(z), given

$$t(z) = \int_0^z s(\xi) d\xi = \int_0^\infty s(\xi) H(z - \xi) d\xi$$

- It should be easy: s(z) = t'(z).
- Hmmm....or is it?



### The Experiment:

Place sensors at vertical depths  $z_j$ , j = 1, ..., n, in a borehole, then:

- Generate a seizmic wave at ground level, t = 0.
- Measure arrival times  $d_j = t(z_j), j = 1, ..., n$ .
- Now try to recover the slowness function s(z), given

$$t(z) = \int_0^z s(\xi) d\xi = \int_0^\infty s(\xi) H(z - \xi) d\xi$$

- It should be easy: s(z) = t'(z).
- Hmmm....or is it?



### The Experiment:

Place sensors at vertical depths  $z_j$ , j = 1, ..., n, in a borehole, then:

- Generate a seizmic wave at ground level, t = 0.
- Measure arrival times  $d_j = t(z_j), j = 1, \ldots, n$ .
- Now try to recover the slowness function s(z), given

$$t(z) = \int_0^z s(\xi) d\xi = \int_0^\infty s(\xi) H(z - \xi) d\xi$$

- It should be easy: s(z) = t'(z).
- Hmmm....or is it?



#### The Experiment:

Place sensors at vertical depths  $z_j$ , j = 1, ..., n, in a borehole, then:

- Generate a seizmic wave at ground level, t = 0.
- Measure arrival times  $d_j = t(z_j), j = 1, \ldots, n$ .
- Now try to recover the slowness function s(z), given

$$t(z) = \int_0^z s(\xi) d\xi = \int_0^\infty s(\xi) H(z - \xi) d\xi$$

- It should be easy: s(z) = t'(z).
- Hmmm....or is it?



#### The Experiment:

Place sensors at vertical depths  $z_j$ , j = 1, ..., n, in a borehole, then:

- Generate a seizmic wave at ground level, t = 0.
- Measure arrival times  $d_i = t(z_i), j = 1, ..., n$ .
- Now try to recover the slowness function s(z), given

$$t(z) = \int_0^z s(\xi) d\xi = \int_0^\infty s(\xi) H(z - \xi) d\xi$$

- It should be easy: s(z) = t'(z).
- Hmmm....or is it?



### The Experiment:

Place sensors at vertical depths  $z_j$ , j = 1, ..., n, in a borehole, then:

- Generate a seizmic wave at ground level, t = 0.
- Measure arrival times  $d_i = t(z_i), j = 1, ..., n$ .
- Now try to recover the slowness function s(z), given

$$t(z) = \int_0^z s(\xi) d\xi = \int_0^\infty s(\xi) H(z - \xi) d\xi$$

- It should be easy: s(z) = t'(z).
- Hmmm....or is it?



### Model Resolution

#### Model Resolution Matrix:

As usual, 
$$R_{\mathbf{m},\alpha,L} = G^{\dagger}G$$
.

• We can show this is  $XFX^{-1}$ 

### Model Resolution

#### Model Resolution Matrix:

As usual,  $R_{\mathbf{m},\alpha,L} = G^{\dagger}G$ .

• We can show this is  $XFX^{-1}$ .

### Outline

#### TGSVD:

We have seen this idea before. Simply apply it to formula above, remembering that the generalized singular values are reverse ordered.

Formula becomes

$$\mathbf{m}_{\alpha,L} = \sum_{j=k}^{p} \frac{\gamma_{j}^{2}}{\gamma_{j}^{2} + \alpha^{2}} \frac{\left(\mathbf{U}_{j}^{T}\mathbf{d}\right)}{c_{j}} \mathbf{X}_{j} + \sum_{j=p+1}^{n} \left(\mathbf{U}_{j}^{T}\mathbf{d}\right) \mathbf{X}_{j}$$

• Key question: where to start k.

#### Basic Idea:

Comes from statistical "leave-one-out" cross validation.

- $\bullet$  Sum these up and choose regularization parameter  $\alpha$  that

$$V_{0}\left(\alpha\right) = \frac{1}{m} \sum_{k=1}^{m} \left( \left( Gm_{\alpha,L}^{[k]} \right)_{k} - d_{k} \right)^{2}.$$

• One can show a good approximation is

$$V_0(\alpha) = \frac{m \|G \mathbf{m}_{\alpha} - \mathbf{d}\|_2}{\operatorname{Tr}(I - GG^{\natural})^2}$$

#### Basic Idea:

Comes from statistical "leave-one-out" cross validation.

- Leave out one data point and use model to predict it.
- $\bullet$  Sum these up and choose regularization parameter  $\alpha$  that

$$V_{0}\left(\alpha\right) = \frac{1}{m} \sum_{k=1}^{m} \left( \left( Gm_{\alpha,L}^{[k]} \right)_{k} - d_{k} \right)^{2}.$$

• One can show a good approximation is

$$V_0(\alpha) = \frac{m \|G \mathbf{m}_{\alpha} - \mathbf{d}\|_2}{\operatorname{Tr}(I - GG^{\natural})^2}$$



#### Basic Idea:

Comes from statistical "leave-one-out" cross validation.

- Leave out one data point and use model to predict it.
- ullet Sum these up and choose regularization parameter lpha that minimizes the sum of the squares of the predictive errors

$$V_0(\alpha) = \frac{1}{m} \sum_{k=1}^m \left( \left( Gm_{\alpha,L}^{[k]} \right)_k - d_k \right)^2.$$

One can show a good approximation is

$$V_0(\alpha) = \frac{m \|G \mathbf{m}_{\alpha} - \mathbf{d}\|_2}{\operatorname{Tr}(I - GG^{\natural})^2}$$



#### Basic Idea:

Comes from statistical "leave-one-out" cross validation.

- Leave out one data point and use model to predict it.
- ullet Sum these up and choose regularization parameter lpha that minimizes the sum of the squares of the predictive errors

$$V_0\left(\alpha\right) = \frac{1}{m} \sum_{k=1}^{m} \left( \left( Gm_{\alpha,L}^{[k]} \right)_k - d_k \right)^2.$$

One can show a good approximation is

$$V_0\left(\alpha\right) = \frac{m \left\| G \mathbf{m}_{\alpha} - \mathbf{d} \right\|_2}{\operatorname{Tr}\left(I - GG^{\natural}\right)^2}$$



### Outline

### Error Estimates:

They exist, even in the hard cases where there is error in both G and d.

• In the simpler case, G known exactly, they take the form

$$\frac{\left\|\mathbf{m}_{\alpha}-\widetilde{\mathbf{m}}_{\alpha}\right\|_{2}}{\left\|\mathbf{m}_{\alpha}\right\|_{2}} \leq \kappa_{\alpha} \frac{\left\|\mathbf{d}-\widetilde{\mathbf{d}}\right\|_{2}}{\left\|G\mathbf{m}_{\alpha}\right\|_{2}}$$

where  $\kappa_{\alpha}$  is inversely proportional to  $\alpha$ .

#### Error Estimates:

They exist, even in the hard cases where there is error in both G and d.

• In the simpler case, G known exactly, they take the form

$$\frac{\left\|\mathbf{m}_{\alpha}-\widetilde{\mathbf{m}}_{\alpha}\right\|_{2}}{\left\|\mathbf{m}_{\alpha}\right\|_{2}} \leq \kappa_{\alpha} \frac{\left\|\mathbf{d}-\widetilde{\mathbf{d}}\right\|_{2}}{\left\|G\mathbf{m}_{\alpha}\right\|_{2}}$$

where  $\kappa_{\alpha}$  is inversely proportional to  $\alpha$ .

#### More Estimates:

• Suppose that the true model  $\mathbf{m}_{true}$  is "smooth" in the sense that there exists vector  $\mathbf{w}$  such that (p=1)  $\mathbf{m}_{true} = G^T \mathbf{w}$  or (p=2)  $\mathbf{m}_{true} = G^T G \mathbf{w}$ . Let  $\Delta = \delta / \| \mathbf{w} \|$  and  $\gamma = 1$  if p=1 and  $\gamma = 4$  if p=2. Then the choice  $\widehat{\alpha} = (\Delta/\gamma)^{1/(p+1)}$  is optimal in the sense that we have the error bound

$$\left\|\mathbf{m}_{true}-G^{\natural}\mathbf{d}
ight\|_{2}=\gamma\left(p+1
ight)\widehat{\alpha}^{p}=\mathcal{O}\left(\Delta^{\frac{p}{p+1}}
ight).$$

• This is about the best we can do. Its significance: the best we can hope for is about 1/2 or 2/3 of the significant digits in the data.

#### More Estimates:

• Suppose that the true model  $\mathbf{m}_{true}$  is "smooth" in the sense that there exists vector  $\mathbf{w}$  such that (p=1)  $\mathbf{m}_{true} = G^T \mathbf{w}$  or (p=2)  $\mathbf{m}_{true} = G^T G \mathbf{w}$ . Let  $\Delta = \delta / \| \mathbf{w} \|$  and  $\gamma = 1$  if p=1 and  $\gamma = 4$  if p=2. Then the choice  $\widehat{\alpha} = (\Delta/\gamma)^{1/(p+1)}$  is optimal in the sense that we have the error bound

$$\left\|\mathbf{m}_{true}-\mathbf{G}^{\natural}\mathbf{d}\right\|_{2}=\gamma\left(p+1\right)\widehat{\alpha}^{p}=\mathcal{O}\left(\Delta^{\frac{p}{p+1}}\right).$$

 This is about the best we can do. Its significance: the best we can hope for is about 1/2 or 2/3 of the significant digits in the data.

#### More Estimates:

• Suppose that the true model  $\mathbf{m}_{true}$  is "smooth" in the sense that there exists vector  $\mathbf{w}$  such that (p=1)  $\mathbf{m}_{true} = G^T \mathbf{w}$  or (p=2)  $\mathbf{m}_{true} = G^T G \mathbf{w}$ . Let  $\Delta = \delta / \| \mathbf{w} \|$  and  $\gamma = 1$  if p=1 and  $\gamma = 4$  if p=2. Then the choice  $\widehat{\alpha} = (\Delta/\gamma)^{1/(p+1)}$  is optimal in the sense that we have the error bound

$$\left\|\mathbf{m}_{true}-\mathbf{G}^{\natural}\mathbf{d}
ight\|_{2}=\gamma\left(p+1
ight)\widehat{lpha}^{p}=\mathcal{O}\left(\Delta^{\frac{p}{p+1}}
ight).$$

• This is about the best we can do. Its significance: the best we can hope for is about 1/2 or 2/3 of the significant digits in the data.

#### Problem:

An image is blurred and we want to sharpen it. Let intensity function  $I_{true}(x, y)$  define the true image and  $I_{blurred}(x, y)$  define the blurred image.

$$I_{blurred}\left(x,y\right) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I_{true}\left(x-u,y-v\right) \Psi\left(u,v\right) du dv$$

where 
$$\Psi(u, v) = e^{-(u^2+v^2)/(2\sigma^2)}$$
.

- Think about discretizing this over an SVGA image
- But the discretized matrix should be sparse!

#### Problem:

An image is blurred and we want to sharpen it. Let intensity function  $I_{true}(x, y)$  define the true image and  $I_{blurred}(x, y)$  define the blurred image.

 A typical model results from convolving true image with Gaussian point spread function

$$I_{blurred}\left(x,y
ight) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I_{true}\left(x-u,y-v
ight) \Psi\left(u,v
ight) \, du \, dv$$

where 
$$\Psi(u, v) = e^{-(u^2+v^2)/(2\sigma^2)}$$
.

- Think about discretizing this over an SVGA image
- But the discretized matrix should be sparse!



#### Problem:

An image is blurred and we want to sharpen it. Let intensity function  $I_{true}(x, y)$  define the true image and  $I_{blurred}(x, y)$  define the blurred image.

 A typical model results from convolving true image with Gaussian point spread function

$$I_{blurred}\left(x,y
ight) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I_{true}\left(x-u,y-v
ight) \Psi\left(u,v
ight) \, du \, dv$$

where 
$$\Psi(u, v) = e^{-(u^2+v^2)/(2\sigma^2)}$$
.

- Think about discretizing this over an SVGA image  $(1024 \times 768)$ .
- But the discretized matrix should be sparse!



#### Problem:

An image is blurred and we want to sharpen it. Let intensity function  $I_{true}(x, y)$  define the true image and  $I_{blurred}(x, y)$  define the blurred image.

 A typical model results from convolving true image with Gaussian point spread function

$$I_{blurred}\left(x,y
ight)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}I_{true}\left(x-u,y-v
ight)\Psi\left(u,v
ight)\,du\,dv$$

where 
$$\Psi(u, v) = e^{-(u^2+v^2)/(2\sigma^2)}$$
.

- Think about discretizing this over an SVGA image  $(1024 \times 768)$ .
- But the discretized matrix should be sparse!



### Sparse Matrix:

- There are efficient ways of storing such matrices and doing linear algebra on them.
- Given a problem Ax = b with A sparse, iterative methods become attractive because they usually only require storage of A, x and some auxillary vectors, and saxpy, gaxpy, dot algorithms - ("scalar a\*x+y", "general A\*x+y", "dot product")
- Classical methods: Jacobi, Gauss-Seidel, Gauss-Seidel SOR and conjugate gradient.
- Methods especially useful for tomographic problems:
   Kaczmarz's method, ART (algebraic reconstruction technique)

### Sparse Matrix:

- There are efficient ways of storing such matrices and doing linear algebra on them.
- Given a problem  $A\mathbf{x} = \mathbf{b}$  with A sparse, iterative methods become attractive because they usually only require storage of A,  $\mathbf{x}$  and some auxillary vectors, and saxpy, gaxpy, dot algorithms ("scalar a\*x+y", "general A\*x+y", "dot product")
- Classical methods: Jacobi, Gauss-Seidel, Gauss-Seidel SOR and conjugate gradient.
- Methods especially useful for tomographic problems:
   Kaczmarz's method, ART (algebraic reconstruction technique)

### Sparse Matrix:

- There are efficient ways of storing such matrices and doing linear algebra on them.
- Given a problem Ax = b with A sparse, iterative methods become attractive because they usually only require storage of A, x and some auxillary vectors, and saxpy, gaxpy, dot algorithms ("scalar a\*x+y", "general A\*x+y", "dot product")
- Classical methods: Jacobi, Gauss-Seidel, Gauss-Seidel SOR and conjugate gradient.
- Methods especially useful for tomographic problems:
   Kaczmarz's method, ART (algebraic reconstruction technique)

### Sparse Matrix:

- There are efficient ways of storing such matrices and doing linear algebra on them.
- Given a problem Ax = b with A sparse, iterative methods become attractive because they usually only require storage of A, x and some auxillary vectors, and saxpy, gaxpy, dot algorithms ("scalar a\*x+y", "general A\*x+y", "dot product")
- Classical methods: Jacobi, Gauss-Seidel, Gauss-Seidel SOR and conjugate gradient.
- Methods especially useful for tomographic problems:
   Kaczmarz's method, ART (algebraic reconstruction technique)

### Sparse Matrix:

- There are efficient ways of storing such matrices and doing linear algebra on them.
- Given a problem Ax = b with A sparse, iterative methods become attractive because they usually only require storage of A, x and some auxillary vectors, and saxpy, gaxpy, dot algorithms ("scalar a\*x+y", "general A\*x+y", "dot product")
- Classical methods: Jacobi, Gauss-Seidel, Gauss-Seidel SOR and conjugate gradient.
- Methods especially useful for tomographic problems:
   Kaczmarz's method, ART (algebraic reconstruction technique).

### To regularize in face of iteration:

Use the number of iteration steps taken as a regularization parameter.

- Conjugate gradient methods are designed to work with SPD coefficient matrices A in the equation  $A\mathbf{x} = \mathbf{b}$ .
- So in the unregularized least squares problem  $G^TG\mathbf{m} = G^T\mathbf{d}$  take  $A = G^TG$  and  $\mathbf{b} = G^T\mathbf{d}$ , resulting in the CGLS method, in which we avoid explicitly computing  $G^TG$ .
- Key fact: in exact arithmetic, if we start at  $\mathbf{m}^{(0)} = \mathbf{0}$ , then  $\|\mathbf{m}^{(k)}\|$  is monotone increasing in k and  $\|G\mathbf{m}^{(k)} \mathbf{d}\|$  is monotonically decreasing in k. So we can make an L-curve in terms of k.

### To regularize in face of iteration:

Use the number of iteration steps taken as a regularization parameter.

- Conjugate gradient methods are designed to work with SPD coefficient matrices A in the equation  $A\mathbf{x} = \mathbf{b}$ .
- So in the unregularized least squares problem  $G^TG\mathbf{m} = G^T\mathbf{d}$  take  $A = G^TG$  and  $\mathbf{b} = G^T\mathbf{d}$ , resulting in the CGLS method, in which we avoid explicitly computing  $G^TG$ .
- Key fact: in exact arithmetic, if we start at  $\mathbf{m}^{(0)} = \mathbf{0}$ , then  $\|\mathbf{m}^{(k)}\|$  is monotone increasing in k and  $\|G\mathbf{m}^{(k)} \mathbf{d}\|$  is monotonically decreasing in k. So we can make an L-curve in terms of k.

### To regularize in face of iteration:

Use the number of iteration steps taken as a regularization parameter.

- Conjugate gradient methods are designed to work with SPD coefficient matrices A in the equation  $A\mathbf{x} = \mathbf{b}$ .
- So in the unregularized least squares problem  $G^TG\mathbf{m} = G^T\mathbf{d}$  take  $A = G^TG$  and  $\mathbf{b} = G^T\mathbf{d}$ , resulting in the CGLS method, in which we avoid explicitly computing  $G^TG$ .
- Key fact: in exact arithmetic, if we start at  $\mathbf{m}^{(0)} = \mathbf{0}$ , then  $\|\mathbf{m}^{(k)}\|$  is monotone increasing in k and  $\|G\mathbf{m}^{(k)} \mathbf{d}\|$  is monotonically decreasing in k. So we can make an L-curve in terms of k.

### To regularize in face of iteration:

Use the number of iteration steps taken as a regularization parameter.

- Conjugate gradient methods are designed to work with SPD coefficient matrices A in the equation  $A\mathbf{x} = \mathbf{b}$ .
- So in the unregularized least squares problem  $G^TG\mathbf{m} = G^T\mathbf{d}$  take  $A = G^TG$  and  $\mathbf{b} = G^T\mathbf{d}$ , resulting in the CGLS method, in which we avoid explicitly computing  $G^TG$ .
- Key fact: in exact arithmetic, if we start at  $\mathbf{m}^{(0)} = \mathbf{0}$ , then  $\|\mathbf{m}^{(k)}\|$  is monotone increasing in k and  $\|G\mathbf{m}^{(k)} \mathbf{d}\|$  is monotonically decreasing in k. So we can make an L-curve in terms of k.

### Outline

#### Basic Idea:

- Most common restrictions: on the magnitude of the parameter values. Which leads to the problem:
- Minimize  $f(\mathbf{m})$  subject to  $l \le m \le u$ .
- One could choose  $f(\mathbf{m}) = \|G\mathbf{m} \mathbf{d}\|_2(\mathsf{BVLS})$
- One could choose  $f(\mathbf{m}) = \mathbf{c}^T \cdot \mathbf{m}$  with additional constraint  $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$ .

#### Basic Idea:

- Most common restrictions: on the magnitude of the parameter values. Which leads to the problem:
- Minimize  $f(\mathbf{m})$  subject to  $l \le m \le u$ .
- One could choose  $f(\mathbf{m}) = \|G\mathbf{m} \mathbf{d}\|_2(BVLS)$
- One could choose  $f(\mathbf{m}) = \mathbf{c}^T \cdot \mathbf{m}$  with additional constraint  $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$ .

#### Basic Idea:

- Most common restrictions: on the magnitude of the parameter values. Which leads to the problem:
- Minimize  $f(\mathbf{m})$  subject to  $l \le m \le u$ .
- One could choose  $f(\mathbf{m}) = \|G\mathbf{m} \mathbf{d}\|_2(\mathsf{BVLS})$
- One could choose  $f(\mathbf{m}) = \mathbf{c}^T \cdot \mathbf{m}$  with additional constraint  $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$ .

#### Basic Idea:

- Most common restrictions: on the magnitude of the parameter values. Which leads to the problem:
- Minimize  $f(\mathbf{m})$  subject to  $l \le m \le u$ .
- One could choose  $f(\mathbf{m}) = \|G\mathbf{m} \mathbf{d}\|_2(\mathsf{BVLS})$
- One could choose  $f(\mathbf{m}) = \mathbf{c}^T \cdot \mathbf{m}$  with additional constraint  $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$ .

#### Basic Idea:

- Most common restrictions: on the magnitude of the parameter values. Which leads to the problem:
- Minimize  $f(\mathbf{m})$ subject to  $l \le m \le u$ .
- One could choose  $f(\mathbf{m}) = \|G\mathbf{m} \mathbf{d}\|_2(\mathsf{BVLS})$
- One could choose  $f(\mathbf{m}) = \mathbf{c}^T \cdot \mathbf{m}$  with additional constraint  $\|G\mathbf{m} \mathbf{d}\|_2 \le \delta$ .