Math 4/896: Seminar in Mathematics Topic: Inverse Theory

Instructor: Thomas Shores
Department of Mathematics

Lecture 18, March 21, 2006 AvH 10

Outline

SVD Implementation

- $\nabla \left(\|G\mathbf{m} \mathbf{d}\|_{2}^{2} + \alpha^{2} \|\mathbf{m}\|_{2}^{2} \right) = \left(G^{T}G\mathbf{m} G^{T}\mathbf{d} \right) + \alpha^{2}\mathbf{m}$
- Equate to zero and these are the normal equations for the system $\begin{bmatrix} G \\ \alpha I \end{bmatrix} \mathbf{m} = \begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix}$, or $(G^TG + \alpha^2 I) \mathbf{m} = G^T \mathbf{d}$
- To solve, calculate $(G^TG + \alpha^2I)^{-1}G^T = 0$

$$V \begin{bmatrix} \frac{\sigma_1}{\sigma_1^2 + \alpha^2} & & & & \\ & \ddots & & & \\ & \frac{\sigma_p}{\sigma_p^2 + \alpha^2} & & & \\ & & 0 & & \\ & & & \ddots & \\ \end{bmatrix} U^T$$

SVD Implementation

- $\nabla \left(\|G\mathbf{m} \mathbf{d}\|_{2}^{2} + \alpha^{2} \|\mathbf{m}\|_{2}^{2} \right) = \left(G^{T}G\mathbf{m} G^{T}\mathbf{d} \right) + \alpha^{2}\mathbf{m}$
- Equate to zero and these are the normal equations for the system $\begin{bmatrix} G \\ \alpha I \end{bmatrix} \mathbf{m} = \begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix}$, or $(G^TG + \alpha^2 I) \mathbf{m} = G^T \mathbf{d}$
- To solve, calculate $(G^TG + \alpha^2I)^{-1}G^T =$

$$V \begin{bmatrix} \frac{\sigma_1}{\sigma_1^2 + \alpha^2} \\ \vdots \\ \frac{\sigma_p}{\sigma_p^2 + \alpha^2} \\ 0 \end{bmatrix} U^T$$

- $\nabla \left(\|G\mathbf{m} \mathbf{d}\|_{2}^{2} + \alpha^{2} \|\mathbf{m}\|_{2}^{2} \right) = \left(G^{T}G\mathbf{m} G^{T}\mathbf{d} \right) + \alpha^{2}\mathbf{m}$
- Equate to zero and these are the normal equations for the system $\begin{bmatrix} G \\ \alpha I \end{bmatrix} \mathbf{m} = \begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix}$, or $(G^TG + \alpha^2 I) \mathbf{m} = G^T \mathbf{d}$
- To solve, calculate $(G^TG + \alpha^2I)^{-1}G^T =$

SVD Implementation

- $\nabla \left(\| \mathbf{G} \mathbf{m} \mathbf{d} \|_{2}^{2} + \alpha^{2} \| \mathbf{m} \|_{2}^{2} \right) = \left(\mathbf{G}^{T} \mathbf{G} \mathbf{m} \mathbf{G}^{T} \mathbf{d} \right) + \alpha^{2} \mathbf{m}$
- Equate to zero and these are the normal equations for the system $\begin{bmatrix} G \\ \alpha I \end{bmatrix} \mathbf{m} = \begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix}$, or $(G^TG + \alpha^2 I) \mathbf{m} = G^T \mathbf{d}$
- To solve, calculate $(G^TG + \alpha^2I)^{-1}G^T =$

$$V \begin{bmatrix} \frac{\sigma_1}{\sigma_1^2 + \alpha^2} \\ & & \frac{\sigma_p}{\sigma_p^2 + \alpha^2} \\ & & 0 \end{bmatrix} U^T$$

SVD Implementation

From the previous equation we obtain that the Moore-Penrose inverse and solution to the regularized problem are given by

$$G_{\alpha}^{\dagger} = \sum_{j=1}^{p} \frac{\sigma_{j}}{\sigma_{j}^{2} + \alpha^{2}} \mathbf{V}_{j} \mathbf{U}_{j}^{T}$$

Error Bounds

$$\mathbf{m}_{\alpha} = G^{\dagger} \mathbf{d} = \sum_{j=1}^{p} \frac{\sigma_{j}^{2}}{\sigma_{j}^{2} + \alpha^{2}} \frac{\left(\mathbf{U}_{j}^{T} \mathbf{d}\right)}{\sigma_{j}} \mathbf{V}_{j}$$

which specializes to the generalized inverse solution we have seen in the case that G is full column rank and $\alpha=0$. (Remember $\mathbf{d}=U\mathbf{h}$ so that $\mathbf{h}=U^T\mathbf{d}$.)

About Filtering:

The idea is simply to "filter" the singular values of our problem so that (hopefully) only "good" ones are used.

• We replace the σ_i by $f(\sigma_i)$. The function f is called a **filter**.

- $f(\sigma) = 1$ simply uses the original singular values.
- $f(\sigma) = \frac{\sigma^2}{\sigma^2 + \alpha^2}$ is the Tikhonov filter we have just developed.
- $f(\sigma) = \max \{ \operatorname{sgn}(\sigma \epsilon), 0 \}$ is the TSVD filter with singular values smaller than ϵ truncated to zero.

About Filtering:

The idea is simply to "filter" the singular values of our problem so that (hopefully) only "good" ones are used.

• We replace the σ_i by $f(\sigma_i)$. The function f is called a **filter**.

- $f(\sigma) = 1$ simply uses the original singular values.
- $f(\sigma) = \frac{\sigma^2}{\sigma^2 + \alpha^2}$ is the Tikhonov filter we have just developed.
- $f(\sigma) = \max \{ \operatorname{sgn}(\sigma \epsilon), 0 \}$ is the TSVD filter with singular values smaller than ϵ truncated to zero.

About Filtering:

The idea is simply to "filter" the singular values of our problem so that (hopefully) only "good" ones are used.

• We replace the σ_i by $f(\sigma_i)$. The function f is called a **filter**.

- $f(\sigma) = 1$ simply uses the original singular values.
- $f(\sigma) = \frac{\sigma^2}{\sigma^2 + \alpha^2}$ is the Tikhonov filter we have just developed.
- $f(\sigma) = \max \{ \operatorname{sgn}(\sigma \epsilon), 0 \}$ is the TSVD filter with singular values smaller than ϵ truncated to zero.

About Filtering:

The idea is simply to "filter" the singular values of our problem so that (hopefully) only "good" ones are used.

• We replace the σ_i by $f(\sigma_i)$. The function f is called a **filter**.

TGSVD and GCV Error Bounds

- $f(\sigma) = 1$ simply uses the original singular values.
- $f(\sigma) = \frac{\sigma^2}{\sigma^2 + \alpha^2}$ is the Tikhonov filter we have just developed.
- $f(\sigma) = \max \{ \operatorname{sgn}(\sigma \epsilon), 0 \}$ is the TSVD filter with singular values smaller than ϵ truncated to zero.

About Filtering:

The idea is simply to "filter" the singular values of our problem so that (hopefully) only "good" ones are used.

• We replace the σ_i by $f(\sigma_i)$. The function f is called a **filter**.

- $f(\sigma) = 1$ simply uses the original singular values.
- $f(\sigma) = \frac{\sigma^2}{\sigma^2 + \alpha^2}$ is the Tikhonov filter we have just developed.
- $f(\sigma) = \max \{ \operatorname{sgn}(\sigma \epsilon), 0 \}$ is the TSVD filter with singular values smaller than ϵ truncated to zero.

L-curves are one tool for choosing the regularization paramter α :

- Make a plot of the curve $(\|\mathbf{m}_{\alpha}\|_{2}, \|G\mathbf{m}_{\alpha} \mathbf{d}\|_{2})$
- Typically, this curve looks to be asymptotic to the axes.
- ullet Choose the value of lpha closest to the corner.
- Caution: L-curves are NOT guaranteed to work as a regularization strategy.
- An alternative: (Morozov's discrepancy principle) Choose α so that the misfit $\|G\mathbf{m}_{\alpha} \mathbf{d}\|_{2}$ is the same size as the data noise $\|\delta\mathbf{d}\|_{2}$.

L-curves are one tool for choosing the regularization paramter α :

- ullet Make a plot of the curve $(\|\mathbf{m}_{\alpha}\|_{2}, \|G\mathbf{m}_{\alpha} \mathbf{d}\|_{2})$
- Typically, this curve looks to be asymptotic to the axes.
- ullet Choose the value of lpha closest to the corner.
- Caution: L-curves are NOT guaranteed to work as a regularization strategy.
- An alternative: (Morozov's discrepancy principle) Choose α so that the misfit $\|G\mathbf{m}_{\alpha} \mathbf{d}\|_{2}$ is the same size as the data noise $\|\delta\mathbf{d}\|_{2}$.

L-curves are one tool for choosing the regularization paramter α :

- ullet Make a plot of the curve $(\|\mathbf{m}_{\alpha}\|_{2}, \|G\mathbf{m}_{\alpha} \mathbf{d}\|_{2})$
- Typically, this curve looks to be asymptotic to the axes.
- ullet Choose the value of lpha closest to the corner.
- Caution: L-curves are NOT guaranteed to work as a regularization strategy.
- An alternative: (Morozov's discrepancy principle) Choose α so that the misfit $\|G\mathbf{m}_{\alpha} \mathbf{d}\|_{2}$ is the same size as the data noise $\|\delta\mathbf{d}\|_{2}$.

L-curves are one tool for choosing the regularization paramter α :

- ullet Make a plot of the curve $(\|\mathbf{m}_{\alpha}\|_{2}, \|G\mathbf{m}_{\alpha} \mathbf{d}\|_{2})$
- Typically, this curve looks to be asymptotic to the axes.
- ullet Choose the value of lpha closest to the corner.
- Caution: L-curves are NOT guaranteed to work as a regularization strategy.
- An alternative: (Morozov's discrepancy principle) Choose α so that the misfit $\|G\mathbf{m}_{\alpha} \mathbf{d}\|_{2}$ is the same size as the data noise $\|\delta\mathbf{d}\|_{2}$.

5.2: SVD Implementation of Tikhonov Regularization
5.3: Resolution, Bias and Uncertainty in the Tikhonov Soluti
5.4: Higher Order Tikhonov Regularization
TGSVD and GCV

The L-curve

L-curves are one tool for choosing the regularization paramter α :

- ullet Make a plot of the curve $(\|\mathbf{m}_{\alpha}\|_{2}, \|G\mathbf{m}_{\alpha} \mathbf{d}\|_{2})$
- Typically, this curve looks to be asymptotic to the axes.
- ullet Choose the value of lpha closest to the corner.
- Caution: L-curves are NOT guaranteed to work as a regularization strategy.
- An alternative: (Morozov's discrepancy principle) Choose α so that the misfit $\|G\mathbf{m}_{\alpha} \mathbf{d}\|_{2}$ is the same size as the data noise $\|\delta\mathbf{d}\|_{2}$.

5.2: SVD Implementation of Tikhonov Regularization
5.3: Resolution, Bias and Uncertainty in the Tikhonov Soluti
5.4: Higher Order Tikhonov Regularization
TGSVD and GCV

The L-curve

L-curves are one tool for choosing the regularization paramter α :

- ullet Make a plot of the curve $(\|\mathbf{m}_{\alpha}\|_{2}, \|G\mathbf{m}_{\alpha} \mathbf{d}\|_{2})$
- Typically, this curve looks to be asymptotic to the axes.
- ullet Choose the value of lpha closest to the corner.
- Caution: L-curves are NOT guaranteed to work as a regularization strategy.
- An alternative: (Morozov's discrepancy principle) Choose α so that the misfit $\|G\mathbf{m}_{\alpha} \mathbf{d}\|_{2}$ is the same size as the data noise $\|\delta\mathbf{d}\|_{2}$.

$$d(s) = \int_{a}^{b} k(s, t) m(t) dt$$

- Such an operator $K: H_1 \to H_2$ has an adjoint operator $K^*: H_2 \to H_1$ (analogous to transpose of matrix operator.)
- Least squares solutions to min ||Km d|| are just solutions to the **normal** equation $K^*Km = K^*d$ (and exist.)
- There is a Moore-Penrose inverse operator K^{\dagger} such that $m=K^{\dagger}d$ is the least squares solution of least 2-norm. But this operator is generally **unbounded** (not continuous.)

$$d(s) = \int_a^b k(s,t) m(t) dt$$

- Such an operator $K: H_1 \to H_2$ has an **adjoint operator** $K^*: H_2 \to H_1$ (analogous to transpose of matrix operator.)
- Least squares solutions to min ||Km d|| are just solutions to the **normal** equation $K^*Km = K^*d$ (and exist.)
- There is a Moore-Penrose inverse operator K^{\dagger} such that $m=K^{\dagger}d$ is the least squares solution of least 2-norm. But this operator is generally **unbounded** (not continuous.)

$$d(s) = \int_a^b k(s,t) m(t) dt$$

- Such an operator $K: H_1 \to H_2$ has an **adjoint operator** $K^*: H_2 \to H_1$ (analogous to transpose of matrix operator.)
- Least squares solutions to min ||Km d|| are just solutions to the **normal** equation $K^*Km = K^*d$ (and exist.)
- There is a Moore-Penrose inverse operator K^{\dagger} such that $m=K^{\dagger}d$ is the least squares solution of least 2-norm. But this operator is generally **unbounded** (not continuous.)

$$d(s) = \int_a^b k(s,t) m(t) dt$$

- Such an operator $K: H_1 \to H_2$ has an **adjoint operator** $K^*: H_2 \to H_1$ (analogous to transpose of matrix operator.)
- Least squares solutions to min ||Km d|| are just solutions to the **normal** equation $K^*Km = K^*d$ (and exist.)
- There is a Moore-Penrose inverse operator K^{\dagger} such that $m=K^{\dagger}d$ is the least squares solution of least 2-norm. But this operator is generally **unbounded** (not continuous.)

- The operator $(K^*K + \alpha I)$ is bounded with bounded inverse and the **regularized problem** $(K^*K + \alpha I) m = K^*d$ has a unique solution m_{α} .
- Given that $\delta = \|\delta d\|$ is the noise level and that the problem actually solved is $(K^*K + \alpha I) m = K^*d^{\delta}$ with $d^{\delta} = d + \delta d$ yielding m_{α}^{δ} Tikhonov defines a **regular algorithm** to be a choice $\alpha = \alpha(\delta)$ such that

$$\alpha\left(\delta\right) \to 0$$
 and $m_{\alpha(\delta)}^{\delta} \to K^{\dagger}d$ as $\delta \to 0$.

Morozov's discrepancy principle is a regular algorithm.

- The operator $(K^*K + \alpha I)$ is bounded with bounded inverse and the **regularized problem** $(K^*K + \alpha I) m = K^*d$ has a unique solution m_{α} .
- Given that $\delta = \|\delta d\|$ is the noise level and that the problem actually solved is $(K^*K + \alpha I) m = K^*d^{\delta}$ with $d^{\delta} = d + \delta d$ yielding m_{α}^{δ} Tikhonov defines a **regular algorithm** to be a choice $\alpha = \alpha(\delta)$ such that

$$\alpha\left(\delta\right) \to 0$$
 and $m_{\alpha(\delta)}^{\delta} \to K^{\dagger}d$ as $\delta \to 0$.

• Morozov's discrepancy principle is a regular algorithm.

- The operator $(K^*K + \alpha I)$ is bounded with bounded inverse and the **regularized problem** $(K^*K + \alpha I) m = K^*d$ has a unique solution m_{α} .
- Given that $\delta = \|\delta d\|$ is the noise level and that the problem actually solved is $(K^*K + \alpha I) m = K^*d^{\delta}$ with $d^{\delta} = d + \delta d$ yielding m_{α}^{δ} Tikhonov defines a **regular algorithm** to be a choice $\alpha = \alpha(\delta)$ such that

$$\alpha\left(\delta\right) \to 0 \text{ and } m_{\alpha(\delta)}^{\delta} \to K^{\dagger}d \text{ as } \delta \to 0.$$

Morozov's discrepancy principle is a regular algorithm.

- The operator $(K^*K + \alpha I)$ is bounded with bounded inverse and the **regularized problem** $(K^*K + \alpha I) m = K^*d$ has a unique solution m_{α} .
- Given that $\delta = \|\delta d\|$ is the noise level and that the problem actually solved is $(K^*K + \alpha I) m = K^*d^{\delta}$ with $d^{\delta} = d + \delta d$ yielding m_{α}^{δ} Tikhonov defines a **regular algorithm** to be a choice $\alpha = \alpha(\delta)$ such that

$$\alpha\left(\delta\right)\to 0 \text{ and } m_{\alpha\left(\delta\right)}^{\delta}\to K^{\dagger}d \text{ as } \delta\to 0.$$

• Morozov's discrepancy principle is a regular algorithm.

5.2: SVD Implementation of Tikhonov Regularization
5.3: Resolution, Bias and Uncertainty in the Tikhonov Soluti
5.4: Higher Order Tikhonov Regularization
TGSVD and GCV
Error Bounds

Outline

5.3: Resolution, Bias and Uncertainty in the Tikhonov Soluti Chapter 5: Tikhonov Regularization TGSVD and GCV Error Bounds

5.4: Higher Order Tikhonov Regularization
TGSVD and GCV

Error Bounds

Resolution Matrix

Definition:

Resolution matrix for a regularized problem starts with this observation:

• Let
$$G^{\dagger} \equiv \left(G^T G + \alpha^2 I \right)^{-1} G^T$$
.

• Then
$$\mathbf{m}_{\alpha} = G^{\dagger} \mathbf{d} = \sum_{j=1}^{p} f_{j} \frac{\left(\mathbf{U}_{j}^{T} \mathbf{d} \right)}{\sigma_{j}} \mathbf{V}_{j} = VFS^{\dagger} U^{T} \mathbf{d}.$$

- Model resolution matrix: $R_{\mathbf{m},\alpha} = G^{\dagger}G = VFV^{T}$
- Data resolution matrix: $R_{\mathbf{d},\alpha} = GG^{\dagger} = UFU^{T}$

The Example 5.1 file constructs the model resolution matrix of the Shaw problem and shows poor resolution in this case.

Resolution Matrix

Definition:

Resolution matrix for a regularized problem starts with this observation:

• Let
$$G^{\sharp} \equiv \left(G^T G + \alpha^2 I \right)^{-1} G^T$$
.

• Then
$$\mathbf{m}_{\alpha} = G^{\natural} \mathbf{d} = \sum_{j=1}^{p} f_{j} \frac{\left(\mathbf{U}_{j}^{T} \mathbf{d} \right)}{\sigma_{j}} \mathbf{V}_{j} = VFS^{\dagger} U^{T} \mathbf{d}.$$

- Model resolution matrix: $R_{\mathbf{m},\alpha} = G^{\dagger}G = VFV^{T}$
- Data resolution matrix: $R_{\mathbf{d},\alpha} = GG^{\natural} = UFU^T$

The Example 5.1 file constructs the model resolution matrix of the Shaw problem and shows poor resolution in this case.

5.2: SVD Implementation of Tikhonov Regularization 5.3: Resolution, Bias and Uncertainty in the Tikhonov Soluti

TGSVD and GCV Error Bounds

Resolution Matrix

Definition:

Resolution matrix for a regularized problem starts with this observation:

• Let
$$G^{\sharp} \equiv \left(G^T G + \alpha^2 I \right)^{-1} G^T$$
.

$$\bullet \ \, \mathsf{Then} \ \, \mathbf{m}_{\alpha} = \mathit{G}^{\natural}\mathbf{d} = \sum_{j=1}^{p} \mathit{f}_{j} \frac{\left(\mathbf{U}_{j}^{T}\mathbf{d}\right)}{\sigma_{j}} \mathbf{V}_{j} = \mathit{VFS}^{\dagger}\mathit{U}^{T}\mathbf{d}.$$

- Model resolution matrix: $R_{\mathbf{m},\alpha} = G^{\dagger}G = VFV^{T}$
- Data resolution matrix: $R_{\mathbf{d},\alpha} = GG^{\dagger} = UFU^{T}$

The Example 5.1 file constructs the model resolution matrix of the Shaw problem and shows poor resolution in this case.

5.2: SVD Implementation of Tikhonov Regularization
5.3: Resolution, Bias and Uncertainty in the Tikhonov Soluti

5.4: Higher Order Tikhonov Regularization

TGSVD and GCV Error Bounds

Resolution Matrix

Definition:

Resolution matrix for a regularized problem starts with this observation:

• Let
$$G^{\sharp} \equiv \left(G^T G + \alpha^2 I \right)^{-1} G^T$$
.

$$\bullet \ \, \mathsf{Then} \ \, \mathsf{m}_{\alpha} = \mathit{G}^{\natural} \mathsf{d} = \sum_{j=1}^{p} \mathit{f}_{j} \frac{\left(\mathsf{U}_{j}^{T} \mathsf{d} \right)}{\sigma_{j}} \mathsf{V}_{j} = \mathit{VFS}^{\dagger} \mathit{U}^{T} \mathsf{d}.$$

- Model resolution matrix: $R_{\mathbf{m},\alpha} = G^{\sharp}G = VFV^{T}$
- Data resolution matrix: $R_{\mathbf{d},\alpha} = GG^{\dagger} = UFU^T$

The Example 5.1 file constructs the model resolution matrix of the Shaw problem and shows poor resolution in this case.

5.2: SVD Implementation of Tikhonov Regularization
5.3: Resolution, Bias and Uncertainty in the Tikhonov Soluti

.3: Resolution, Blas and Uncertainty in the Tikhonov Solut

TGSVD and GCV
Error Bounds

Resolution Matrix

Definition:

Resolution matrix for a regularized problem starts with this observation:

• Let
$$G^{\sharp} \equiv \left(G^T G + \alpha^2 I \right)^{-1} G^T$$
.

$$\bullet \ \, \mathsf{Then} \ \, \mathbf{m}_{\alpha} = \mathit{G}^{\natural}\mathbf{d} = \sum_{j=1}^{p} \mathit{f}_{j} \frac{\left(\mathbf{U}_{j}^{T}\mathbf{d}\right)}{\sigma_{j}} \mathbf{V}_{j} = \mathit{VFS}^{\dagger}\mathit{U}^{T}\mathbf{d}.$$

- Model resolution matrix: $R_{\mathbf{m},\alpha} = G^{\sharp}G = VFV^{T}$
- Data resolution matrix: $R_{\mathbf{d},\alpha} = GG^{\dagger} = UFU^T$

The Example 5.1 file constructs the model resolution matrix of the Shaw problem and shows poor resolution in this case.

5.2: SVD Implementation of Tikhonov Regularization 5.3: Resolution, Bias and Uncertainty in the Tikhonov Soluti 5.4: Higher Order Tikhonov Regularization TGSVD and GCV

Error Bounds

Outline

- .2: SVD Implementation of Tikhonov Regularization .3: Resolution, Bias and Uncertainty in the Tikhonov Soluti
- 5.4: Higher Order Tikhonov Regularization
 TGSVD and GCV
 Error Bounds

Higher Order Regularization

Basic Idea

We can think of the regularization term $\alpha^2 \|\mathbf{m}\|_2^2$ as favoring minimizing the 0-th order derivative of a function m(x) under the hood. Alternatives:

- Minimize a matrix approximation to m'(x). This is a first order method.
- Minimize a matrix approximation to m''(x). This is a second order method.
- These lead to new minimization problems: to minimize

$$\|G\mathbf{m} - \mathbf{d}\|_{2}^{2} + \alpha^{2} \|L\mathbf{m}\|_{2}^{2}$$
.

• How do we resolve this problem as we did with L = I?

.2: SVD Implementation of Tikhonov Regularization
 .3: Resolution, Bias and Uncertainty in the Tikhonov Soluti

5.4: Higher Order Tikhonov Regularization TGSVD and GCV Error Bounds

Higher Order Regularization

Basic Idea

We can think of the regularization term $\alpha^2 \|\mathbf{m}\|_2^2$ as favoring minimizing the 0-th order derivative of a function m(x) under the hood. Alternatives:

- Minimize a matrix approximation to m'(x). This is a first order method.
- Minimize a matrix approximation to m''(x). This is a second order method.
- These lead to new minimization problems: to minimize

$$\|G\mathbf{m} - \mathbf{d}\|_{2}^{2} + \alpha^{2} \|L\mathbf{m}\|_{2}^{2}$$
.

• How do we resolve this problem as we did with L = I?

.2: SVD Implementation of Tikhonov Regularization
 .3: Resolution, Bias and Uncertainty in the Tikhonov Soluti

5.4: Higher Order Tikhonov Regularization
TGSVD and GCV
Fror Rounds

Higher Order Regularization

Basic Idea

We can think of the regularization term $\alpha^2 \|\mathbf{m}\|_2^2$ as favoring minimizing the 0-th order derivative of a function m(x) under the hood. Alternatives:

- Minimize a matrix approximation to m'(x). This is a first order method.
- Minimize a matrix approximation to m''(x). This is a second order method.
- These lead to new minimization problems: to minimize

$$\|G\mathbf{m} - \mathbf{d}\|_{2}^{2} + \alpha^{2} \|L\mathbf{m}\|_{2}^{2}$$
.

• How do we resolve this problem as we did with L = I?

5.4: Higher Order Tikhonov Regularization

Error Bounds

Higher Order Regularization

Basic Idea

We can think of the regularization term $\alpha^2 \|\mathbf{m}\|_2^2$ as favoring minimizing the 0-th order derivative of a function m(x) under the hood. Alternatives:

- Minimize a matrix approximation to m'(x). This is a first order method
- Minimize a matrix approximation to m''(x). This is a second order method.
- These lead to new minimization problems: to minimize

$$\|G\mathbf{m} - \mathbf{d}\|_{2}^{2} + \alpha^{2} \|L\mathbf{m}\|_{2}^{2}$$
.

• How do we resolve this problem as we did with L = I?

5.2: SVD Implementation of Tikhonov Regularization
5.3: Resolution, Bias and Uncertainty in the Tikhonov Soluti
5.4: Higher Order Tikhonov Regularization

TGSVD and GCV
Error Bounds

Higher Order Regularization

Basic Idea

We can think of the regularization term $\alpha^2 \|\mathbf{m}\|_2^2$ as favoring minimizing the 0-th order derivative of a function m(x) under the hood. Alternatives:

- Minimize a matrix approximation to m'(x). This is a first order method.
- Minimize a matrix approximation to m''(x). This is a second order method.
- These lead to new minimization problems: to minimize

$$\|G\mathbf{m} - \mathbf{d}\|_{2}^{2} + \alpha^{2} \|L\mathbf{m}\|_{2}^{2}$$
.

• How do we resolve this problem as we did with L = I?

Example Matrices

We will explore approximations to first and second derivatives at the board.

Key Idea: Generalized SVD (GSVD)

Theorem

Let G be an $m \times n$ matrix and L a $p \times n$ matrix. Then there exist $m \times m$ orthogonal U, $p \times p$ orthogonal V and $n \times n$ nonsingular matrix X with $m \ge n \ge \min\{p, n\} = q$ such that

$$U^T G X = \operatorname{diag} \{c_1, c_2, \dots, c_n\}$$
 $V^T L X = \operatorname{diag} \{s_1, s_2, \dots, s_q\}$
 $C^T C + S^T S = 1$
 $0 \le c_1 \le c_2 \dots \le c_n \le 1$
 $1 \ge s_1 \ge s_2 \dots \ge s_n \ge 0$

The numbers $\gamma_i = c_i/s_i$, i = 1, ..., q are called the **generalized** singular values of G and L and $0 \le \gamma_1 \le \gamma_2 \cdots \le \gamma_q$.

Notes: If rank (L) = q, then the singular values are finite.

Application to Higher Order Regularization

The minimization problem is shown, just as we did earlier, to be equivalent to the problem

$$\left(G^{\mathsf{T}}G + \alpha^2 L^{\mathsf{T}}L\right)\mathbf{m} = G^{\mathsf{T}}\mathbf{d}$$

which has solution

$$\mathbf{m}_{\alpha,L} = \left(G^T G + \alpha^2 L^T L \right) G^T \mathbf{d} \equiv G^{\natural} \mathbf{d}.$$

With some work:

$$\mathbf{m}_{\alpha,L} = \sum_{j=1}^{p} \frac{\gamma_j^2}{\gamma_j^2 + \alpha^2} \frac{\left(\mathbf{U}_j^T \mathbf{d}\right)}{c_j} \mathbf{X}_j + \sum_{j=p+1}^{n} \left(\mathbf{U}_j^T \mathbf{d}\right) \mathbf{X}_j$$

5.2: SVD Implementation of Tikhonov Regularization 5.3: Resolution, Bias and Uncertainty in the Tikhonov Soluti 5.4: Higher Order Tikhonov Regularization TGSVD and GCV

Outline

5.2: SVD Implementation of Tikhonov Regularization

TGSVD and GCV Error Bounds

TGSVD:

We have seen this idea before. Simply apply it to formula above, remembering that the generalized singular values are reverse ordered.

Formula becomes

$$\mathbf{m}_{\alpha,L} = \sum_{j=k}^{p} \frac{\gamma_j^2}{\gamma_j^2 + \alpha^2} \frac{\left(\mathbf{U}_j^T \mathbf{d}\right)}{c_j} \mathbf{X}_j + \sum_{j=p+1}^{n} \left(\mathbf{U}_j^T \mathbf{d}\right) \mathbf{X}_j$$

• Key question: where to start k.

Example 5.6 gives a nice illustration of the ideas. We'll use the CD script to explore it.

- 5.2: SVD Implementation of Tikhonov Regularization 5.3: Resolution, Bias and Uncertainty in the Tikhonov Soluti
- 5.4: Higher Order Tikhonov Regularization
 TGSVD and GCV

Basic Idea:

Comes from statistical "leave-one-out" cross validation.

- Leave out one data point and use model to predict it.
- ullet Sum these up and choose regularization parameter lpha that minimizes the sum of the squares of the predictive errors

$$V_{0}\left(\alpha\right) = \frac{1}{m} \sum_{k=1}^{m} \left(\left(Gm_{\alpha,L}^{[k]} \right)_{k} - d_{k} \right)^{2}.$$

Error Bounds

$$V_0(\alpha) = \frac{m \|G\mathbf{m}_{\alpha} - \mathbf{d}\|_2}{\operatorname{Tr}(I - GG^{\natural})^2}$$

- 5.2: SVD Implementation of Tikhonov Regularization
- 5.4: Higher Order Tikhonov Regularization
 TGSVD and GCV

Basic Idea:

Comes from statistical "leave-one-out" cross validation.

- Leave out one data point and use model to predict it.
- ullet Sum these up and choose regularization parameter lpha that minimizes the sum of the squares of the predictive errors

$$V_0(\alpha) = \frac{1}{m} \sum_{k=1}^m \left(\left(Gm_{\alpha,L}^{[k]} \right)_k - d_k \right)^2.$$

Error Bounds

$$V_0(\alpha) = \frac{m \|G\mathbf{m}_{\alpha} - \mathbf{d}\|_2}{\operatorname{Tr}(I - GG^{\natural})^2}$$

- 5.2: SVD Implementation of Tikhonov Regularization
- 5.3: Resolution, Bias and Uncertainty in the Tikhonov Solu
- TGSVD and GCV
 Error Bounds

Basic Idea:

Comes from statistical "leave-one-out" cross validation.

- Leave out one data point and use model to predict it.
- ullet Sum these up and choose regularization parameter lpha that minimizes the sum of the squares of the predictive errors

$$V_0\left(\alpha\right) = rac{1}{m} \sum_{k=1}^m \left(\left(\mathit{Gm}_{\alpha,L}^{[k]} \right)_k - d_k \right)^2.$$

$$V_0(\alpha) = \frac{m \|G\mathbf{m}_{\alpha} - \mathbf{d}\|_{2}}{\operatorname{Tr}(I - GG^{\natural})^{2}}$$

- 5.2: SVD Implementation of Tikhonov Regularization
- 5.3: Resolution, Bias and Uncertainty in the Tikhonov Soli
- TGSVD and GCV
 Error Bounds

Basic Idea:

Comes from statistical "leave-one-out" cross validation.

- Leave out one data point and use model to predict it.
- \bullet Sum these up and choose regularization parameter α that minimizes the sum of the squares of the predictive errors

$$V_0\left(\alpha\right) = \frac{1}{m} \sum_{k=1}^{m} \left(\left(Gm_{\alpha,L}^{[k]} \right)_k - d_k \right)^2.$$

$$V_0(\alpha) = \frac{m \|G \mathbf{m}_{\alpha} - \mathbf{d}\|_2}{\operatorname{Tr}(I - GG^{\natural})^2}$$

5.2: SVD Implementation of Tikhonov Regularization 5.3: Resolution, Bias and Uncertainty in the Tikhonov Soluti 5.4: Higher Order Tikhonov Regularization TGSVD and GCV Error Bounds

Outline

5.2: SVD Implementation of Tikhonov Regularization
5.3: Resolution, Bias and Uncertainty in the Tikhonov Soluti
5.4: Higher Order Tikhonov Regularization
TGSVD and GCV

Error Bounds

Error Estimates:

They exist, even in the hard cases where there is error in both G and d.

ullet In the simpler case, G known exactly, they take the form

$$\frac{\left\|\mathbf{m}_{\alpha} - \widetilde{\mathbf{m}}_{\alpha}\right\|_{2}}{\left\|\mathbf{m}_{\alpha}\right\|_{2}} \leq \kappa_{\alpha} \frac{\left\|\mathbf{d} - \widetilde{\mathbf{d}}\right\|_{2}}{\left\|G\mathbf{m}_{\alpha}\right\|_{2}}$$

Error Bounds

where κ_{α} is inversely proportional to α .

0

5.2: SVD Implementation of Tikhonov Regularization
5.3: Resolution, Bias and Uncertainty in the Tikhonov Soluti
5.4: Higher Order Tikhonov Regularization
TGSVD and GCV

Error Bounds

Error Estimates:

They exist, even in the hard cases where there is error in both G and d.

ullet In the simpler case, G known exactly, they take the form

$$\frac{\left\|\mathbf{m}_{\alpha}-\widetilde{\mathbf{m}}_{\alpha}\right\|_{2}}{\left\|\mathbf{m}_{\alpha}\right\|_{2}} \leq \kappa_{\alpha} \frac{\left\|\mathbf{d}-\widetilde{\mathbf{d}}\right\|_{2}}{\left\|\mathbf{G}\mathbf{m}_{\alpha}\right\|_{2}}$$

Error Bounds

where κ_{α} is inversely proportional to α .

5.2: SVD Implementation of Tikhonov Regularization
5.3: Resolution, Bias and Uncertainty in the Tikhonov Soluti

TGSVD and GCV
Error Bounds

Error Bounds

Error Estimates:

They exist, even in the hard cases where there is error in both G and d.

ullet In the simpler case, G known exactly, they take the form

$$\frac{\left\|\mathbf{m}_{\alpha}-\widetilde{\mathbf{m}}_{\alpha}\right\|_{2}}{\left\|\mathbf{m}_{\alpha}\right\|_{2}} \leq \kappa_{\alpha} \frac{\left\|\mathbf{d}-\widetilde{\mathbf{d}}\right\|_{2}}{\left\|\mathbf{G}\mathbf{m}_{\alpha}\right\|_{2}}$$

where κ_{α} is inversely proportional to α .