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To solve the Tikhonov regularized problem, first recall:

oV (HGm —d| +a? Hmng) = (GTGm— GTd) + o®m
@ Equate to zero and these are the normal equations for the

system [ 3 }m:[d },or (GTG+a?)m=G'd
al

0

o To solve, calculate (GT G + a?/)
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SVD Implementation

From the previous equation we obtain that the Moore-Penrose
inverse and solution to the regularized problem are given by

which specializes to the generalized inverse solution we have seen in
the case that G is full column rank and & = 0. (Remember d = Uh
so thath = U'd.)
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The Filter Idea

About Filtering:
The idea is simply to “filter” the singular values of our problem so
that (hopefully) only “good” ones are used.

@ We replace the o; by f (0;). The function f is called a filter.

@ f (o) =1 simply uses the original singular values.
2

o f(o)= — 7 is the Tikhonov filter we have just developed.
02+ a?
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The Filter Idea

About Filtering:

The idea is simply to “filter” the singular values of our problem so
that (hopefully) only “good” ones are used.
@ We replace the o; by f (0;). The function f is called a filter.

@ f (o) =1 simply uses the original singular values.
2

o f(o)= — 7 is the Tikhonov filter we have just developed.
02+ a?

o f (o) =max{sgn (o —¢€),0} is the TSVD filter with singular
values smaller than e truncated to zero.
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@ Typically, this curve looks to be asymptotic to the axes.
@ Choose the value of « closest to the corner.

o Caution: L-curves are NOT guaranteed to work as a
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The L-curve

rves are one tool for choosing the regularization paramter a:
o Make a plot of the curve (||m,||,,||Gm, —d||,)
@ Typically, this curve looks to be asymptotic to the axes.
@ Choose the value of « closest to the corner.
°

Caution: L-curves are NOT guaranteed to work as a
regularization strategy.

An alternative: (Morozov's discrepancy principle) Choose « so
that the misfit ||Gm, — d||, is the same size as the data noise

1]l
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Historical Notes

Tikhonov's original interest was in operator equations
b
d(s) :/ k(s, £) m(t) dt
a

or d = Km where K is a compact (bounded = continuous) linear
operator from one Hilbert space H; into another Hs. In this
situation:

@ Such an operator K : H; — H, has an adjoint operator
K* : Hy — H; (analogous to transpose of matrix operator.)
@ Least squares solutions to min ||Km — d|| are just solutions to
the normal equation K*Km = K*d (and exist.)

o There is a Moore-Penrose inverse operator K such that
m = KTd is the least squares solution of least 2-norm. But
this operator is generally unbounded (not continuous.)
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Regularization Toolbox.
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Historical Notes
More on Tikhonov's operator equation:

@ The operator (K*K + al) is bounded with bounded inverse
and the regularized problem (K*K + al) m = K*d has a
unique solution m,.

e Given that 0 = ||6d|| is the noise level and that the problem
actually solved is (K*K + al) m = K*d® with d® = d + 6d
yielding m? Tikhonov defines a regular algorithm to be a
choice av = a(0) such that

a(6) — 0 and mi(é) — K'd as § — 0.

@ Morozov's discrepancy principle is a regular algorithm.

Finish Section 5.2 by exploring the Example 5.1 file, which
constructs the L-curve of the Shaw problem using tools from the
Regularization Toolbox.
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o Let Gf = <GTG+a21)_1 GT.

g

2. (Y4)
o Thenm, = G'd=> fi~—=V; = VFSTUTd.
=1 g

@ Model resolution matrix: Rm o = G'G = VFVT

The Example 5.1 file constructs the model resolution matrix of the
Shaw problem and shows poor resolution in this case.
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Resolution Matrix

Resolution matrix for a regularized problem starts with this
observation:

o Let Gf = <GTG+a21)_1 GT.
o

2. (Y4)
o Thenm, = G'd=> fi~—=V; = VFSTUTd.
=1 g

@ Model resolution matrix: Rm o = G'G = VFVT
@ Data resolution matrix: Ry, = GG = UFUT

The Example 5.1 file constructs the model resolution matrix of the
Shaw problem and shows poor resolution in this case.
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Basic Idea

We can think of the regularization term 2 ||m|\§ as favoring
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hood. Alternatives:
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order method.
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Higher Order Regularization

Basic Idea

We can think of the regularization term 2 ||m|\§ as favoring
minimizing the 0-th order derivative of a function m(x) under the
hood. Alternatives:

@ Minimize a matrix approximation to m’ (x). This is a first
order method.

@ Minimize a matrix approximation to m” (x). This is a second
order method.

@ These lead to new minimization problems: to minimize

2 2
IGm —d||3 + o [|Lm]|3 .
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Higher Order Regularization

Basic Idea

We can think of the regularization term 2 ||m|\§ as favoring
minimizing the 0-th order derivative of a function m(x) under the
hood. Alternatives:

@ Minimize a matrix approximation to m’ (x). This is a first
order method.

@ Minimize a matrix approximation to m” (x). This is a second
order method.

@ These lead to new minimization problems: to minimize

2 2
IGm —d||3 + o [|Lm]|3 .

@ How do we resolve this problem as we did with L = /7
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Example Matrices

We will explore approximations to first and second derivatives at
the board.



Key Idea: Generalized SVD (GSVD)

Theorem

Let G be an m x n matrix and L a p x n matrix. Then there exist
m X m orthogonal U, p x p orthogonal V' and n x n nonsingular
matrix X with m > n > min{p, n} = q such that

UTGX = diag{c,c,...,c}
VILX = diag{s1,s,...,5}
CTC+5S"s =1
0<a<o <<l
1>2s12>28-2>252>0

The numbers ~; = ¢;/si, i = 1,...,q are called the generalized
singular values of G and L and 0 <y <72+ < 4.

Notes: If rank (L) = g, then the singular values are finite.




Application to Higher Order Regularization

The minimization problem is shown, just as we did earlier, to be
equivalent to the problem

(GTG n azLTL> m=GTd
which has solution
Mo, = (GTG + a2LTL) G7d = 6.

With some work:

maL_z 2+a2(”;_ )i 3o (u7d)x

Jj=p+1
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We have seen this idea before. Simply apply it to formula above,
remembering that the generalized singular values are reverse
ordered.

@ Formula becomes

p 2 u’d n
> %21 - < ch )xj +,-:z,,;1 <U1Td> X;

My =

Example 5.6 gives a nice illustration of the ideas. We'll use the CD
script to explore it.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse The



5.2: SVD Implementation of Tikhonov Regularization

5.3: Resolution, Bias and Uncertainty in the Tikhonov Soluti
Chapter 5: Tikhonov Regularization 5.4: Higher Order Tikhonov Regularization

TGSVD and GCV

Error Bounds

Comes from statistical “leave-one-out” cross validation.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse The



5.2: SVD Implementation of Tikhonov Regularization

5.3: Resolution, Bias and Uncertainty in the Tikhonov Soluti
Chapter 5: Tikhonov Regularization 5.4: Higher Order Tikhonov Regularization

TGSVD and GCV

Error Bounds

Comes from statistical “leave-one-out” cross validation.

@ Leave out one data point and use model to predict it.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse The



5.2: SVD Implementation of Tikhonov Regularization
5.3: Resolution, Bias and Uncertainty in the Tikhonov Soluti
Chapter 5: Tikhonov Regularization 5.4: Higher Order Tikhonov Regularization

TGSVD and GCV
Error Bounds

Comes from statistical “leave-one-out” cross validation.
@ Leave out one data point and use model to predict it.

@ Sum these up and choose regularization parameter « that
minimizes the sum of the squares of the predictive errors
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Comes from statistical “leave-one-out” cross validation.
@ Leave out one data point and use model to predict it.

@ Sum these up and choose regularization parameter « that
minimizes the sum of the squares of the predictive errors

5N 1K 2
Vole) = 237 ((Gmi2), — o)
k=1
@ One can show a good approximation is

m||Gm, —d|,

Yo lo) = Gery?
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Error Bounds

They exist, even in the hard cases where there is error in both G
and d.
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Error Bounds

Error Estimates:

They exist, even in the hard cases where there is error in both G
and d.

@ In the simpler case, G known exactly, they take the form

-],

||Gma”2

[my, —mg|,

Imall

< Ka

where k is inversely proportional to a.
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