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SVD Implementation

To solve the Tikhonov regularized problem, �rst recall:

∇
(
‖Gm− d‖22 + α2 ‖m‖22

)
=

(
GTGm− GTd

)
+ α2m

Equate to zero and these are the normal equations for the

system

[
G

αI

]
m =

[
d

0

]
, or

(
GTG + α2I

)
m = GTd

To solve, calculate
(
GTG + α2I

)−1
GT =

V



σ1
σ21+α2

. . .
σp

σ2p+α2
0

. . .


UT
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SVD Implementation

From the previous equation we obtain that the Moore-Penrose

inverse and solution to the regularized problem are given by

G †
α =

p∑
j=1

σj
σ2
j + α2VjU

T
j

mα = G †d =

p∑
j=1

σ2
j

σ2
j + α2

(
UT
j d

)
σj

Vj

which specializes to the generalized inverse solution we have seen in

the case that G is full column rank and α = 0. (Remember d = Uh

so that h = UTd.)
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The Filter Idea

About Filtering:

The idea is simply to ��lter� the singular values of our problem so

that (hopefully) only �good� ones are used.

We replace the σi by f (σi ). The function f is called a �lter.

f (σ) = 1 simply uses the original singular values.

f (σ) =
σ2

σ2 + α2 is the Tikhonov �lter we have just developed.

f (σ) = max {sgn (σ − ε) , 0} is the TSVD �lter with singular

values smaller than ε truncated to zero.
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The L-curve

L-curves are one tool for choosing the regularization paramter α:

Make a plot of the curve (‖mα‖2 , ‖Gmα − d‖2)
Typically, this curve looks to be asymptotic to the axes.

Choose the value of α closest to the corner.

Caution: L-curves are NOT guaranteed to work as a

regularization strategy.

An alternative: (Morozov's discrepancy principle) Choose α so

that the mis�t ‖Gmα − d‖2 is the same size as the data noise

‖δd‖2.
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Historical Notes

Tikhonov's original interest was in operator equations

d (s) =

∫ b

a
k (s, t)m (t) dt

or d = Km where K is a compact (bounded = continuous) linear

operator from one Hilbert space H1 into another H2. In this

situation:

Such an operator K : H1 → H2 has an adjoint operator

K ∗ : H2 → H1 (analogous to transpose of matrix operator.)

Least squares solutions to min ‖Km − d‖ are just solutions to

the normal equation K ∗Km = K ∗d (and exist.)

There is a Moore-Penrose inverse operator K † such that

m = K †d is the least squares solution of least 2-norm. But

this operator is generally unbounded (not continuous.)
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Historical Notes

More on Tikhonov's operator equation:

The operator (K ∗K + αI ) is bounded with bounded inverse

and the regularized problem (K ∗K + αI )m = K ∗d has a

unique solution mα.

Given that δ = ‖δd‖ is the noise level and that the problem

actually solved is (K ∗K + αI )m = K ∗d δ with d δ = d + δd
yielding mδ

αTikhonov de�nes a regular algorithm to be a

choice α = α (δ) such that

α (δ) → 0 and mδ
α(δ) → K †d as δ → 0.

Morozov's discrepancy principle is a regular algorithm.

Finish Section 5.2 by exploring the Example 5.1 �le, which

constructs the L-curve of the Shaw problem using tools from the

Regularization Toolbox.
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Resolution Matrix

De�nition:

Resolution matrix for a regularized problem starts with this

observation:

Let G \ ≡
(
GTG + α2I

)−1
GT .

Then mα = G \d =

p∑
j=1

fj

(
UT
j d

)
σj

Vj = VFS†UTd.

Model resolution matrix: Rm,α = G \G = VFV T

Data resolution matrix: Rd,α = GG \ = UFUT

The Example 5.1 �le constructs the model resolution matrix of the

Shaw problem and shows poor resolution in this case.
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Higher Order Regularization

Basic Idea

We can think of the regularization term α2 ‖m‖22 as favoring

minimizing the 0-th order derivative of a function m (x) under the

hood. Alternatives:

Minimize a matrix approximation to m′ (x). This is a �rst

order method.

Minimize a matrix approximation to m′′ (x). This is a second

order method.

These lead to new minimization problems: to minimize

‖Gm− d‖22 + α2 ‖Lm‖22 .

How do we resolve this problem as we did with L = I?
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Minimize a matrix approximation to m′ (x). This is a �rst

order method.

Minimize a matrix approximation to m′′ (x). This is a second

order method.

These lead to new minimization problems: to minimize

‖Gm− d‖22 + α2 ‖Lm‖22 .

How do we resolve this problem as we did with L = I?
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Example Matrices

We will explore approximations to �rst and second derivatives at

the board.



Key Idea: Generalized SVD (GSVD)

Theorem

Let G be an m × n matrix and L a p × n matrix. Then there exist

m ×m orthogonal U, p × p orthogonal V and n × n nonsingular

matrix X with m ≥ n ≥ min {p, n} = q such that

UTGX = diag {c1, c2, . . . , cn}
V TLX = diag {s1, s2, . . . , sq}

CTC + STS = 1

0 ≤ c1 ≤ c2 · · · ≤ cn ≤ 1

1 ≥ s1 ≥ s2 · · · ≥ sn ≥ 0

The numbers γi = ci/si , i = 1, . . . , q are called the generalized

singular values of G and L and 0 ≤ γ1 ≤ γ2 · · · ≤ γq.

Notes: If rank (L) = q, then the singular values are �nite.



Application to Higher Order Regularization

The minimization problem is shown, just as we did earlier, to be

equivalent to the problem(
GTG + α2LTL

)
m = GTd

which has solution

mα,L =
(
GTG + α2LTL

)
GTd ≡ G \d.

With some work:

mα,L =

p∑
j=1

γ2
j

γ2
j + α2

(
UT
j d

)
cj

Xj +
n∑

j=p+1

(
UT
j d

)
Xj
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TGSVD:

We have seen this idea before. Simply apply it to formula above,

remembering that the generalized singular values are reverse

ordered.

Formula becomes

mα,L =

p∑
j=k

γ2
j

γ2
j + α2

(
UT
j d

)
cj

Xj +
n∑

j=p+1

(
UT
j d

)
Xj

Key question: where to start k .

Example 5.6 gives a nice illustration of the ideas. We'll use the CD

script to explore it.
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GCV

Basic Idea:

Comes from statistical �leave-one-out� cross validation.

Leave out one data point and use model to predict it.

Sum these up and choose regularization parameter α that

minimizes the sum of the squares of the predictive errors

V0 (α) =
1

m

m∑
k=1

((
Gm

[k]
α,L

)
k
− dk

)2
.

One can show a good approximation is

V0 (α) =
m ‖Gmα − d‖2
Tr (I − GG \)

2
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Error Bounds

Error Estimates:

They exist, even in the hard cases where there is error in both G

and d .

In the simpler case, G known exactly, they take the form

‖mα − m̃α‖2
‖mα‖2

≤ κα

∥∥∥d− d̃
∥∥∥
2

‖Gmα‖2

where κα is inversely proportional to α.
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