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Note: This really is a brief tour. You will �nd much more detail in the excellent proba-
bility and statistics review in Appendix B of our textbook. Everyone should read through
this appendix.

Probability

We'll begin with a few simple examples, one with a discrete set of outcomes and the other
a continuous set.

Example 0.1. Consider the experiment of randomly selecting an individual out of the entire
population of a certain species of animal for the purpose of some measurement. The selection
of a particular individual could be thought of as an outcome to this random experiment.
Selection of a male would amount to an event E , and the probability of selecting a male
would be a number P (E) between 0 and 1.

Example 0.2. Consider the experiment of throwing a dart at a dart board. We assume
that the throw always hits the dart board somewhere. Here the outcome of this experiment
is to locate the dart on some point on the dart board, so we can think of these points as
outcomes. One event of interest is the event E of hitting the bulls eye region with the dart.
Again, the probability of doing so would be a number P (E) between 0 and 1.
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Here are some of the key concepts of probability theory. You should relate these to the
two experiments just described.

• Sample Space: A set S of possible outcomes from a random experiment or sequence
thereof.

• Event: Any subset of the sample space S, i.e., of outcomes. (In some cases, there
might be limitations on what subsets are admissible.)

• Probability measure: A way of measuring the likelihood that an outcome belongs
to event E. This is a function P (E) of events with natural properties: 0 ≤ P (E) ≤ 1,
P (S) = 1 and for disjoint events Ei,

∞∑
i=1

P (Ei) = P

(
∞⋃
i=1

Ei

)
.

Simple consequence: If E is an event, then the probability of the complementary
event E occurring is

P
(
E
)

= 1− P (E)

• Conditional probability: This is the probability that an event E occurs, given
that event F has occurred. It is denoted and de�ned by the formula

P (E |F ) =
P (EF )

P (F )
.

Note the notation EF , which means the event of the occurrence of both E and F .
Another way of expressing this event is the set-theoretic notation E ∩ F .

• Independent events: Events E and F such that

P (EF ) = P (E) P (F )

in which case the conditional probability of E given F is

P (E | F ) ≡ P (EF )

P (F )
= P (E) .

• Law of Total Probability: Given disjoint and exhaustive events E1, E2,, . . . , En,
and another event F ,

P (F ) =
n∑

i=1

P (F |Ei) P (Ej)

• Bayes' Theorem:

P (E | F ) ≡ P (F | E) P (E)

P (F )
.

Some writers identify Bayes' Theorem as a combination of the Law of Total Proba-
bility and the above, namely, with notation as in the LTP and index k,

P (Ek | F ) ≡ P (F | Ek) P (Ek)∑n
i=1 P (F |Ei) P (Ej)

.
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Statistics

Random Variables. Once we have randomly selected an individual outcome ω in an exper-
iment, we can observe some relevant quantity and call it X(ω). This function X is called a
random variable, and a particular value observed in an experiment is customarily denoted
as x = X (ω).
Let's review the standard notations of this statistical framework.

• Random variable: a function X (abbreviate to r.v.) mapping outcomes to real
numbers. A particular value is denoted by lower case x.

• Probability density function: a function p mapping the range of a random vari-
able to probabilities (abbreviate to p.d.f.):
In the case the r.v. is discrete, say has values x1, x2, ... then

P (a ≤ X ≤ b) =
∑

{p (xi) | a ≤ xi ≤ b} .

In the discrete case, p (x) is also referred to as a probability mass function (p.m.f.).
If the r.v. is continuous, then the density function f satis�es

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx.

In this case f really is a density function with units of of probability per length.
Note: since an experiment always results in some value of the r.v. X, we must have∫∞
−∞ f (x) dx = 1 and a similar result for discrete r.v.'s

• The (cumulative) distribution function (abbreviate to c.d.f.) associated to the
r.v. is

p (x) = P (X ≤ x) =
∑

{p (xi) | xi ≤ x}

for discrete r.v.'s and

F (x) = P (X ≤ x) =

∫ x

−∞
f(s)ds

for continuous r.v.'s. Note: from properties of the p.d.f., we see that
� F (x) is a monotone increasing function, i.e., if x ≤ y, then F (x) ≤ F (y).
� lim

x→∞
F (x) = 1.

Discrete.

Example 0.3. Consider the experiment of Example_0.2. Once we have thrown the dart
and landed on ω, we might observe the score X (ω) we earned according to the portion of
the dart board on which our dart landed. Here X will take on a �nite number of values. Let
us further suppose that there are only two areas on the board: the center bullseye of area
A (winner, value 1) and an outer area B (loser, value 0.) Suppose that the probability of
hitting one area is proportional to its area. Then the probability of hitting the bullseye is

p =
A

A + B

and the probability of losing is q = 1 − p. The p.d.f. is given by f (0) = q and f (1) = p.
The c.d.f. is given by F (0) = q and f (1) = 1.
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An interesting variation on the previous example is to repeat the experiment, say n times.
Now the random variable X is your score: the number of times you hit the bullseye. The
p.d.f. for this experiment (called a Bernoulli trial) is the so-called binomial distribution

f (x) =

(
n
x

)
px (1− p)n−x , x = 0, 1, . . . , n

Continuous.

Example 0.4. Consider the experiment of Example 0.1. Once we have selected an animal
ω, we might take its weight and call it the statistic X(ω). Note that X could take on a
continuous range of values. The p.d.f. and c.d.f. of a continuous random variable are more
subtle and one often makes a priori assumptions about them.

Let's simplify our dart example, so we can obtain distributions more easily.

Example 0.5. Suppose that our target is not a two dimensional board, but a one dimensional
line segment, say the interval of points x such that a ≤ x ≤ b or symbolically, [a, b] Suppose
further that there is no bias toward any one point. Then it is reasonable to assume that the
p.d.f. is constant. Since it is de�ned on [a, b] and the area under this function should be 1,
we see that the p.d.f. is the function

f (x) =

{
1

b−a
if a ≤ x ≤ b

0 otherwise

while the c.d.f. should be

F (x) =


0 if x < a

1
b−a

(x− a) if a ≤ x ≤ b

1 if b < x.

This is the so-called uniform distribution.

Before we discuss further speci�c distributions, there are some more concepts we should
develop.

Expectation and Variance. Key concepts:

• Expectation of a function g of a r.v.:

E [g (X)] =

{∑
i g(xi)p(xi), if X is discrete∫∞
−∞ g(x)f(x)dx if X is continuous

• Expectation of X (or mean, �rst moment): µ = µX = E [X]. One can show

E [αX + β] = αE [X] + β

E [αX + βY ] = αE [X] + βE [Y ]

• Variance of X: This is just

Var (X) = E
[
(X − E [X])2] .

One can show

Var (X) = E
[
X2
]
− E [X]2

Var (αX + β) = α2 Var (X)



5

• Standard deviation of X: σ = σX = Var (X)1/2

Basically, the idea is this: the expected value is a kind of weighted average of values, so that
one could say roughly that �on the average one expects the value of repeated experiments
to be the mean.� The variance and standard deviation are measures of the spread of the
random variable. Note that the units of σ are the same as the units of µ, so that the standard
deviation is a more practical measure of the spread of the random variable, but the variance
σ2 is more useful for some calculations and theoretical purposes.
Standard Notation: To save ourselves the inconvenience of always having to assign a

name to the p.d.f. and c.d.f. of a given r.v. X, we adopt the convention that

fX (x) = p.d.f. of the r.v. X

FX (x) = c.d.f. of the r.v. X.

Normality and the Central Limit Theorem. One of the most important single distri-
butions in statistics is the normal distribution. This is a r.v. whose density function is
the famous bell shaped curve

f (x) =
1√
2πσ

e−(x−µ)2/2σ2

, −∞ < x < ∞.

It can be shown that this really is a density function with mean µ and variance σ2. Its
corresponding distribution is

F (x) =
1√
2πσ

∫ x

−∞
e−(s−µ)2/2σ2

ds, −∞ < x < ∞.

The standard normal distribution is the one with µ = 0 and σ = 1, that is,

f(x) =
1√
2π

e−x2/2, −∞ < x < ∞

is the p.d.f. of the distribution. The c.d.f. for the standard normal distribution has the
following designation, which we use throughout our discussion of statistics:

N(x) =
1√
2π

∫ x

−∞
e−s2/2 ds, −∞ < x < ∞.

The notation N (µ, σ2) is used for a normal distribution of mean µ and variance σ2. One sees
phrases like �X is N (µ, σ2)� or �X N (µ, σ2) .� We can pass back and forth between standard
normal distributions because of this important fact: if X has a distribution N (µ, σ2), then
Z = (X − µ) /σ has the distribution N (0, 1), the standard normal distribution.
Here is a key property of this important kind of distribution:
Theorem: If X and Y are independent normal random variables with parameters (µ1, σ

2
1),

(µ2, σ
2
2), then X + Y is normal with parameters (µ1 + µ2, σ

2
1 + σ2

2).
It follows that this Theorem is true for any �nite number of independent r.v.'s.
In a limiting sense, sums of r.v.'s with �nite mean and variance tend to a normal distri-

bution. This is the Central Limit Theorem.
Central Limit Theorem. Let X1, X2, . . . , Xn be independent and identically distributed

random variables with a �nite expected value µ and variance σ2. Then the random variable

Zn =
X1 + X2 + · · ·+ Xn − nµ√

nσ
=

1
n

(X1 + X2 + · · ·+ Xn)− µ

σ/
√

n

has distribution that approaches the standard normal distribution as n →∞.
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Some Common Distributions. Here are a few common distributions.
Binomial:

• f (x) =
n!

x! (n− x)!
px (1− p)n−x, x = 0, 1, . . . , n

• Mean: µ = np
• Variance: σ2 = np (1− p)
• Application: Bernoulli trials as in variation on Example 0.4

Poisson:

• f (x) =
µxe−µ

x!
px (1− p)n−x, n = 0, 1, . . .

• Mean: µ = µ
• Variance: σ2 = µ
• Application: A limiting case of binomial distribution. Used, e.g., to approximate bi-
nomial distributions with large n and µ = np of moderate size (typically < 5.) There
is a whole family of �Poisson processes� that are used in problems like manufacturing
errors, etc.

Gamma:

• f (x) =
1

Γ (α) βα
xα−1e−x/β, 0 < x < ∞, Γ (x) =

∫∞
0

sx−1e−s ds. Here 2α = ν is called

the number of degrees of freedom.
• Mean: µ = αβ
• Variance: σ2 = αβ2

• Application: An umbrella for other extremely important p.d.f.'s. For example, α = 1,
β = 1/λ gives the family of exponential distributions and α = ν/2, β = 2 gives a
chi-square distribution with ν degrees of freedom, which is denoted as χ2 (ν). Also
used in queueing theory.

Normal:

• f (x) =
1√
2πσ

e−(x−µ)2/(2σ2), −∞ < x < ∞.

• Mean: µ = µ
• Variance: σ2 = σ2

• Application: Many, e.g., random error. Also, a distinguished distribution by way of
the Central Limit Theorem.

Student's t:

• f (x) =
Γ ((ν + 1) /2)

Γ (ν/2)

1√
νπ

(
1 +

x2

ν

)−(ν+1)/2

, −∞ < x < ∞. Here ν is the number

of degrees of freedom.
• Mean: µ = 0
• Variance: σ2 = ν

ν−2

• Application: Approaches a standard normal distribution as ν → ∞. Also, given n
independent samples of normally distributed r.v.'s with a common unknown standard
deviation σ, let the sample mean be given by x = (x1 + x2 + · · ·+ xn) /n and the
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sample variance by s2 =
1

n− 1

n∑
i=1

(xi − x)2, then the random variable

t =
X −X

S/
√

n

has a Student's t distribution with n− 1 degrees of freedom.

Lognormal:

• f (x) =
1√

2πσx
e−(ln x−ν)2/(2σ2), −∞ < x < ∞.

• Mean: µ = eν+σ2/2

• Variance: σ2 = e2ν+σ
(
eσ2 − 1

)
• Application: This is really the density function for eX , where X is normally dis-
tributed. Equivalently, X = ln Y . It is fundamentally important in modeling the
dynamics of asset prices.

Joint Distributions. For the most part, we'll restrict our discussion of joint random vari-
ables to continuous distributions, though all the ideas have a discrete counter part. Likewise,
the ideas we are going to discuss extend to any number of r.v.'s, like X1, X2, . . . , Xn, but we
will mostly con�ne our attention to two r.v.'s, say X and Y .
In order to motivate the idea of joint distributions, let's consider Example 0.5 with a

twist: we will throw a dart at our one dimensional dart board twice. With each throw, we
will note the position of the outcome on the interval [0, 1] and this number is our random
variable. This gives us two random variables X and Y which share the same sample space of
outcomes when viewed individually. Moreover, it makes the statistics of the new experiment
more complicated than just numbers on the interval 0 ≤ x ≤ 1. Now they are ordered pairs
of numbers (x, y) such that 0 ≤ x, y ≤ 1; In other words, they belong to a unit square in the
xy-plane. The event X + Y ≤ 1 can now be pictured as a subset of this square.
Now suppose we ask the question: what is the probability that X + Y ≤ 1? In order to

answer this question, we need to understand how these variables behave jointly, so we will
need a p.d.f. f (x, y) that is a joint distribution of both random variables. Here �density�
means probability per unit area, not length. Once we have such a function, we can describe
the probability of an event A occurring as a double sum in the case of discrete r.v.'s and as
a double integral in the case of a continuous r.v. Thus,

P (A) =
x

A

f (x, y) dA.

In most cases we can reduce these double integrals over plane regions to iterated integrals as
in ordinary calculus. As an example of this, we can de�ne a joint cumulative distribution
function (c.d.f.) by the formula

F (x, y) = P (X ≤ x, Y ≤ y)

and obtain that

F (x, y) =

∫ x

−∞

∫ y

−∞
f (x, y) dy dx.

Now what about the p.d.f. of the example we have mentioned. This can get complicated. If
both throws are random, and the p.d.f. for each r.v. separately is the uniform distribution,
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it is reasonable to expect that the joint p.d.f. should also be uniformly distributed, so we
have f (x, y) = 1. But what if the throws are not independent? For example, if we play a
game where the �score� of the throws, x + y, is close to a certain number, then where the
�rst dart landed will a�ect where we throw the second one. So in this case we would expect
f (x, y) to express a more complicated relationship between x and y.
Standard Notation: To save ourselves the inconvenience of always having to assign a

name to the joint p.d.f. and c.d.f. of given r.v.'s X and Y , we adopt the convention that

fX,Y (x, y) = joint p.d.f. of the r.v.'s X, Y.

FX,Y (x, y) = joint c.d.f. of the r.v.'s X, Y .

Expectation and Covariance. Just as with p.d.f.'s of one variable, one can de�ne some
key concepts for r.v.'s X and Y :

• Expectation of a function g (x, y) of r.v.'s:

E [g (X, Y )] =

∫ ∞
−∞

∫ ∞
−∞

g (x, y) fX,Y (x, y) dy dx.

• Covariance of X and Y : This is just

Cov (X, Y ) = E [(X − E [X]) (Y − E [Y ])] .

One can show

Cov (X, X) = Var (X)

Cov (X, Y ) = E [XY ]− E [X] E [Y ]

Cov (X, Y ) = Cov (Y,X)

Var (X + Y ) = Var (X) + Var (Y ) + 2 Cov (Y,X)

• Correlation of X and Y :

ρ (X, Y ) =
Cov (X, Y )√

Var (X) Var (Y )
.

One can show that −1 ≤ ρ (X, Y ) ≤ 1 and that ρ (X, X) = 1. If ρ (X,Y ) = 0 or,
equivalently, Cov (X,Y ) = 0, we say that X and Y are uncorrelated.

• Independent r.v.'s X and Y : means that for all a and b,

P (X ≤ a, Y ≤ b) = P (X ≤ a) P (Y ≤ b) .

One can show that if X and Y are independent and g(x), h(y) are any functions then

FX,Y (x, y) = FX (x) FY (y)

fX,Y (x, y) = fX (x) fY (y)

E [g(X)h(Y )] = E [g(X)] E [h(Y )] .

Thus we see that if two random variables are independent, then the sum of their variances
behaves nicely. In this case we obtain that

Var (αX + βY ) = α2 Var (X) + β2 Var (Y ) .
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Multivariate Normal Distributions. Here is a generic example of an extremely impor-
tant multivariate distribution. In the case of two r.v.'s this type of distribution is called a
bivariate distribution. These distributions are the �correct� analog in higher dimensions to
the normal distributions in one dimension. In the following example we need the concept of
a �symmetric positive de�nite matrix (SPD)�. First, a square n × n matrix A is sym-
metric if AT = A. Secondly, A is positive de�nite if xT Ax > 0 for all nonzero vectors x.
Some useful facts:

• If A is symmetric, then all the eigenvalues of A are real.
• A symmetric matrix is positive de�nite if and only of all its eigenvalues are positive.
• If A is symmetric, then there exists an orthogonal matrix Q (i.e., QT = Q−1) such that

QT AQ is diagonal and moreover the diagonal elements are exactly the eigenvalues of
A.

Example 0.6. Suppose that we are given a vector µ and an n× n matrix C = [ci,j] that is
SPD. De�ne the function

f (x1, x2, . . . , xn) =
1

(2π)n/2
√

det (C)
e−(x−µ)T C−1(x−µ)/2, −∞ < xi < ∞.

Then the following are true:

• The function f (x1, x2, . . . , xn) is a joint p.d.f. for some r.v.'s X1, X2, . . . , Xn.
• Each Xi is normally distributed with mean µi and variance ci,i.
• ci,j = Cov (Xi, Xj) .

The following theorems can be established with some work:
Theorem: If X is a multivariate normal random vector with expected values given by

the vector µ and covariance matrix C , and if Y = AX then Y is also multivariate with
E [Y ] = Aµ and Cov (Y) = ACAT .
Theorem: If X is a multivariate normal random n-vector with expected values given by

the vector µ and covariance matrix C of full rank, then the r.v.

Z = (X− µ)T C−1 (X− µ)

has a chi-square distribution with n degrees of freedom.

Parameter Estimation

Point Estimation. Here is the problem: We are given independent r.v.'s X1, X2, . . . , Xm

with p.d.f.'s f1 (x1) , f2 (x2) , . . . , fm (xm). However, the p.d.f.'s are complicated by the fact
that they in turn depend on n parameters m1, m2, . . . ,mn which can be viewed as the
components of the parameter vector m. The problem is that we don't know the parameters.
How do we take the outcome of an experiment, say X1 = x1, X2 = x2, . . . , Xm = xm and use
the joint p.d.f. of this distribution to say something about m? Speci�cally, we would like a
point estimate of m.
One approach is to use a maximum likelihood estimator (m.l.e.) of m. Here's how

it is done:

(1) Form the joint p.d.f. of these independent r.v.'s, which we know is,

f (x1, x2, . . . , xm|m) = f1 (x1|m) f2 (x2|m) · · · fm (xm|m) .

Here the notation acknowledges that f depends on a given m.
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(2) View f as a function of m and rename it as the liklihood function

L (m) = f (x1, x2, . . . , xm|m)

(3) Find the value ofm that maximizes the function for the particular sample x1, x2, . . . , xm.
This is the maximum likelihood estimator of the parameter in question.

Note: this usually involves setting the gradient of L equal to zero and solving the resulting
system. This system is guaranteed to have a maximum if, e.g., f is continuous. For f is
non-negative everywhere and tends to zero as ‖m‖ → ∞.

Example 0.7. Each Xi has distribution N (di, σi), i.e., is normally distributed with mean
µi and variance σi. Suppose further that

µ = [µ1, µ2, . . . , µm]T = Gm

Find a maximum likelihood estimator for m.

Solution. Form the joint pdf and obtain

L (m) =
1√

2πσ1

e−(x1−µ1)2/(2σ2
1) · · · 1√

2πσm

e−(xm−µm)2/(2σ2
m).

In this case we will not follow the procedure above because it is about as much work as we
had to do in deriving the equivalence of the normal equations and the least squares problem.
Let's just take a close look at what we're maximizing and obtain that a m.l.e. of m comes
from a least squares solution to the system.

WGm = Wd

where W = diag (1/σ1, . . . , 1/σm).
Here are two desirable properties of an estimator:

(1) Consistent (converges in probability)
(2) Unbiased estimator.

Con�dence Intervals. The word �statistic� has di�erent meanings to di�erent folks. For us
a statistic shall mean any de�nite function of one or more r.v.'s. Two important examples
come from the notion of a random sample, which means a sequence of independent and
identically distributed (abbreviated to i.i.d.) random variables:

• The mean of a random sample X1, X2, . . . , Xn:

X =
1

n

n∑
i=1

Xi.

• The variance of a random sample X1, X2, . . . , Xn:

V 2 =
1

n

n∑
i=1

(
Xi −X

)2
.

• The sample variance of a random sample X1, X2, . . . , Xn:

S2 =
1

n− 1

n∑
i=1

(
Xi −X

)2
.
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Key question: How do we estimate the mean and and variance of the distribution of these
random samples, or for that matter any other parameter associated with the distribution?
This question leads us to the notion of con�dence intervals: given a probability 1− α

called a �con�dence coe�cient� use the data to construct the smallest possible interval
I of real numbers such that the probability that the true value of the parameter being in
this interval is 1 − α. The use of 1 − α is a matter of convenience in formulas. One ofter
sees terms like the �95% con�dence interval�. This means the con�dence interval found with
1− α = 0.95. We'll explore these ideas for the case of mean and variance.
Motivation: What's so great about the mean?

Example 0.8. Suppose that we are attempting to measure a ideal and de�nite physical
quantity, say the mass m of the object. We do so by taking repeated measurements of the
mass, say m1, m2, . . . ,mn. What to do with these numbers? In the absence of any other
information, we might average them out, in the hopes that errors will somehow cancel each
other out. Is this realistic? Answer: sometimes.
Speci�cally, we'll describe the experiment more formally as a sequence M1, M2, . . . ,Mn of

r.v.'s. We may write
Mi = m + Xi

where Xi is the error of the ith measurement. Certainly, it is reasonable to assume that
these r.v.'s are independent. In many cases it is also reasonable to assume that the errors
are normally distributed with mean 0 and standard deviation σ. It follows that the Mi are
normally distributed with mean

E [Mi] = E [m + Xi] = E [m] + E [Xi] = m + 0 = m

and variance
Var (Mi) = Var (Ei) = σ2.

In particular, the number we're really interested in, m, is the expectation of a normal random
variable. We'll see why the sample mean is useful by answering the key question.

The basic idea for computing con�dence intervals is to �nd a statistic X that is a �good�
estimator of the desired parameter and has a known distribution, which can be used to
compute a con�dence interval. Here's how: we split the probability into half and construct
an interval which has α/2 area under the p.d.f. fX to the left of a point a and area α/2
under the p.d.f. to the right of a point b. Here's a picture:

ba
x

y

y = f (x)
X

α/2 α/2

1−α

We accomplish locating the points a and b as follows: solve the equations

FX (a) =
α

2

FX (b) = 1− α

2
.
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If FX is continuous, we are guaranteed that solutions exist, and in fact, an inverse function
to the c.d.f. FX exists.
Finally, WHAT DOES ALL THIS MEAN, exactly??? It means that if you calculate a

con�dence interval based on data you have observed, and if all the hypotheses about i.i.d.
normal r.v.'s is correct, then the true value of parameter you are estimating is in this interval
with a probability of 1− α. Put another way: 100 · (1− α) times out of 100 this calculation
will yield an interval containing the desired parameter.
.

Estimating Mean with Known Variance and Normal Distribution. Some simple facts about
normal distributions play a key role here. Suppose that X1, X2, . . . , Xn are i.i.d. normal
r.v.'s with mean µ and variance σ2. From various facts outlined in these notes we have:

• X1 + X2 + · · ·+ Xn has a normal distribution with mean nµ and variance nσ2. (See
p. .)

• So 1
n

(X1 + X2 + · · ·+ Xn) = X has a normal distribution with mean nµ/n = µ and

variance nσ2/n2 = σ2/n=(σ/
√

n)
2
. (See p. .)

• Hence Z =
(
X − µ

)
/ (σ/

√
n) has a standard normal distribution. (See p .)

Thus we have shown that

Theorem. Let X1, X2, . . . , Xn be i.i.d. normal r.v.'s with mean µ and variance σ2. Then
the statistic

Z =
X − µ

σ/
√

n

has a standard normal distribution.

Estimating Mean with Unknown Variance and Normal Distribution. The Student's t distri-
bution plays a key role here. The key theorem is as follows:

Theorem. (Sampling Theorem) Let X1, X2, . . . , Xn be i.i.d. normal r.v.'s with mean µ and
variance σ2. Then the statistic

T =
X − µ

S/
√

n

has a Student's t distribution with n− 1 degrees of freedom.

Estimating Variance with a Normal Distribution. The chi-square distribution plays a key
role here.

Theorem. Let X1, X2, . . . , Xn be i.i.d. normal r.v.'s with mean µ and variance σ2. Then
the statistic

Y = (n− 1)
S2

σ2

has a chi-square distribution with n− 1 degrees of freedom.

We use these statistical facts as outlined above. If we are given sample data, we calculate
the resulting test statistic and observe whether or not it falls in the con�dence interval.
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Test of Hypotheses. Con�dence intervals give us one tool for making decisions. They
can be placed in the broader context of testing of hypotheses. For example, a manufacturer
might claim that a beam has load capacity of µ0 = 200 tons. We don't really care if the
capacity is really greater than 200, but we certainly do care if it is less.
Here is an outline of how a typical testing of hypothesis unfolds in general:

(1) Formulate formulate two hypotheses, the so-called null hypothesis H0, and an alterna-
tive hypothesis H1. Here the hypotheses are exclusive, but not necessarily exhaustive.

(2) Now we pick a signi�cance level α for the test (which is the complement of the con�-
dence level α we used in the previous section.) Typical choices are α = 0.05, 0.01, 0.001,
or, if you prefer percentages, 5%, 1% or 0.1%. Once we have chosen α, we can com-
pute the critical region, that is, the range of values of the sample statistic for which
we will reject the null hypothesis. We choose the region so that the probability of
the rejecting the null hypothesis when it is true is exactly α. The complement of the
critical region is the acceptance region.

(3) Choose a random variable with known distribution which depends on the hypotheses,

Θ̂ = g (X1, X2, . . . , Xn)

and that gives a �good� estimator for where the observed parameter θ should be. We
use this statistic to determine a critical region.

(4) Use a sample x1, x2, . . . , xn to determined an observed value θ̂ = g (x1, x2, . . . , xn).

(5) Accept or reject the null hypothesis based on whether or not the observed value θ̂
falls in the critical region.

Notice that there are two types of error that we could commit:

(1) Type I error: reject H0 when it is true. In this case we know exactly what the
likelihood of error is, namely, it is just the signi�cance level α of our test.

(2) Type II error: accept H1 when it is false. We label the probability of this type of
error as β. The number 1− β = η is called the power of the test. This number isn't
obvious as α as that it actually depends on the true value θ of the parameter as well
as the hypothesized value θ0. In fact, we can write η = η (θ) and β = β (θ).

(3) Types I and II errors are related. Generally, for a �xed sample size reducing the
probability of one will increase the other. Given speci�c values of the true θ and a
�xed α, we can estimate the sample size needed to achieve a given power η. Notice
that if the true value θ is close, but not equal to the hypothesized value θ0, then β
approaches α, so the power of the test approaches zero. In general, the only way to
reduce both is increase the sample size.

Consider the example we started above:

Example 0.9. We want to test a manufacturer's claim that a certain type of beam that
they produce has load capacity of µ0 = 200 tons. If the capacity is signi�cantly less that
200, we will not purchase the beams. We let µ be the true value of the parameter. Hence,
we formulate these hypotheses:
H0 : µ = µ0 ≡ 200.
H1: µ = µ1 < 200.
We'll assume that the individual capacities are normally distributed about the mean µ. Next,
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since we don't know the variance of this distribution, we select as an estimator statistic

Θ̂ = T =
X − µ

S/
√

n
= T (µ) .

We know that T has a Student's t distribution with n − 1 degrees of freedom by our as-
sumption on the individual capacities. Finally, we compute the sample statistic under the

assumption µ = 200 to obtain a value θ̂. If this value falls in the critical region we reject the
null hypothesis. Otherwise we accept it. Actually, a better phrase than �accept it� might be
that we do not reject the null hypothesis. In this situation it's easy to calculate the smallest
value of the power function, namely

P
(
Θ̂ ≤ c

)
= FT (µ) (c)

where
1− α = FT (µ0) (c) .


