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Universal Examples

What are we talking about? A direct problem is the sort of thing
we traditionally think about in mathematics:

Question −→ Answer

An inverse problem looks like this:

Question ←− Answer

Actually, this schematic doesn't quite capture the real �avor of
inverse problems. It should look more like

Question ←− (Approximate) Answer
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Universal Examples

Example

(Plato) In the allegory of the cave, unenlightened humans can only
see shadows of reality on a dimly lit wall, and from this must
reconstruct reality.

Example

The game played on TV show �Jeopardy�: given the answer, say
the question.
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Math Examples

Matrix Theory: The m × n matrix A, n × 1 vector x and m × 1
vector b satisfy Ax = b.

Direct problem: given A, x compute b.

Inverse problem: given A,b, compute x.

Di�erentiation: given f (x) ∈ C [0, 1] and F (x) =
∫ x

0
f (t) dt

Direct problem: given f (x) ∈ C [0, 1], �nd the inde�nite
integral F (x).

Inverse problem: given F (0) = 0 and F (x) ∈ C 1[0, 1], �nd
f (x) = F ′ (x).
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Math Examples

Heat Flow in a Rod

Heat �ows in a steady state through an insulated inhomogeneous
rod with a known heat source and the temperature held at zero at
the endpoints. Under modest restrictions, the temperature function
u(x) obeys the law

−
(
k(x)u′

)′
= f (x), 0 < x < 1

with boundary conditions u(0) = 0 = u(1), thermal conductivity
k(x), 0 ≤ x ≤ 1 and f (x) determined by the heat source.
Direct Problem: given parameters k(x), f (x), �nd u(x) = u(x ; k).
Inverse Problem: given f (x) and measurement of u(x), �nd k(x).
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Well-Posed Problems

A well-posed problem is characterized by three properties:

1 The problem has a solution.

2 The solution is unique.

3 The solution is stable, that is, it varies continuously with the
given parameters of the problem.

A problem that is not well-posed is called ill-posed. In numerical
analysis we are frequently cautioned to make sure that a problem is
well posed before we design solution algorithms. Another problem
with unstable problems: even if exact answers are computable,
suppose experimental or numerical error occurs: change in solution
could be dramatic!
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Illustration: a Discrete Inverse Problem

So what's the fuss? The direct problem of computing F from
F = Kf is easy and the solution to the inverse problem is
f = K−1F , right?
Wrong! All of Hadamard's well-posedness requirements fall by the
wayside, even for the �simple� inverse problem of solving for x with
Ax = b a linear system.
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What Goes Wrong?

1 This linear system Ax = b has no solution:[
1 1
1 1

] [
x1
x2

]
=

[
0
1

]
2 This system has in�nitely many solutions:[

1 1
1 1

] [
x1
x2

]
=

[
0
0

]
3 This system has no solution for ε 6= 0 and in�nitely many for

ε = 0, so solutions do not vary continuously with parameter ε:[
1 1
1 1

] [
x1
x2

]
=

[
0
ε

]
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Some Remedies: Existence

We use an old trick: least squares, which �nds the x that minimizes
the size of the residual (squared) ‖b− Ax‖2 . This turns out to be
equivalent to solving the normal equations

ATAx = ATb,

a system which is guaranteed to have a solution. Further, we can
see that if Ax = b has any solution, then every solution to the
normal equations is a solution to Ax = b. This trick extends to
more abstract linear operators K of equations Kx = y using the
concept of �adjoint� operators K ∗ which play the part of a
transpose matrix AT .
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Some Remedies: Uniqueness

We �regularize� the problem. We'll illustrate it by one particular
kind of regularization, called Tikhonov regularization. One
introduces a regularization parameter α > 0 in such a way that
small α give us a problem that is �close� to the original. In the case
of the normal equations, one can show that minimizing the
modi�ed residual

‖b− Ax‖2 + α ‖x‖2

leads to the linear system
(
ATA + αI

)
x = ATb, where I is the

identity matrix. One can show the coe�cient matrix ATA + αI is
always nonsingular. Therefore, the problem has a unique solution.
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Choice of Regularization Parameter

What should we do about α? This is one of the more fundamental
(and intriguing) problems of inverse theory. Let's analyze one of
our simple systems for insight, say[

1 1
1 1

] [
x1
x2

]
=

[
1
1

]
Invariably, our input data for the inverse problem, (1, 1), has error
in it, say we have (1+ δ1, 1+ δ2) for data instead. Let δ = δ1 + δ2.
The regularized system becomes[

2 + α 2
2 2 + α

] [
x1
x2

]
=

[
2 + δ
2 + δ

]
= (2 + δ)

[
1
1

]
which has unique solution[

x1
x2

]
=

[
2 + α 2
2 2 + α

]−1

(2 + δ)

[
1
1

]
=

2 + δ

4 + α

[
1
1

]
Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Choice of Regularization Parameter

[
x1
x2

]
=

[
2 + α 2
2 2 + α

]−1

(2 + δ)

[
1
1

]
=

2 + δ

4 + α

[
1
1

]
Observe that if the input error δ were 0, all we would have to do is
let α→ 0 and we would get the valid solution 1

2
(1, 1). But given

that the input error is not zero, taking the limit as α→ 0 gives us a
worse approximation to a solution than we would otherwise get by
choosing α ≈ 2δ. (Our solutions always satisfy x1 = x2, so to satisfy
x1 + x2 = 1 we need x1 = x2 = 1

2
or as close as we can get to it.)

There are many questions here, e.g., how do we know in general
what the best choice of regularization parameter is, if any? This
and other issues are the subject matter of a course in inverse theory.
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Stability

In this special case, we get stability for free � for each regularized

problem. We cannot hope to have stability for the unregularized
problem Ax = b since A−1 doesn't even exist.
But things are even more complicated: For the general linear
problemKx = y , even if K−1 is well de�ned the inverse problem
may not be stable (although stability happens in some cases).
However, we have to look to in�nite dimensional examples such as
our di�erentiation example (operator K is integration), where it can
be shown that K−1 (di�erentiation) exists but is not continuous,
even though K is.
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A Continuous Inverse Problem

Let K : C [0, 1]→ C [0, 1] via the rule Kf (x) =
∫ x

0
f (y) dy This is a

one-to-one function. Measure size by the sup norm:

‖f ‖ = sup
0≤x≤1

|f (x)|

so that the �closeness� of f (x) and g(x) is determined by the
number ‖f − g‖ . Then one can show that the operator K is
continuous in the sense that if f (x) and g(x) are close, then so are
Kf (x) and Kg(x).
Let R = K (C [0, 1]), the range of K . Then K−1 : R → C [0, 1] is
also one-to-one. But it is not continuous.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Failure of Stability

Consider the function

gε(x) = ε sin
( x

ε2

)
,

where ε > 0. We have ‖gε‖ = ‖gε − 0‖ ≤ ε. So for small ε, gε(x)
is close to the zero function. Yet,

K−1gε(x) = gε(x)′ =
ε

ε2
cos

( x

ε2

)
=

1

ε
cos

( x

ε2

)
so that

∥∥K−1gε

∥∥ = 1

ε , so that K−1gε becomes far from zero as
ε→ 0. Hence K−1 is not a continuous operator.
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A General Framework

Forward Problem

consists of

A model fully speci�ed by (physical) parameters m.

A known function G that, ideally, maps parameters to data d

by way of
d = G (m) .

(Pure) Inverse Problem

is to �nd m given observations d .
We hope (!) that this means to calculate m = G−1 (d), but what
we really get stuck with is

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



(Practical) Inverse Problem

is to �nd m given observations d = dtrue + η so that equation to be
inverted is

d = G (mtrue) + η.

What we are tempted to do is invert the equation

d = G (mapprox)

and be happy with mapprox . Unfortunately, mapprox may be a poor
approximation to mtrue . This makes our job a whole lot tougher �
and interesting!
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Volterra Integral Equations

Our continuous inverse problem example is a special case of this
important class of problems:

De�nition

An equation of the form

d (s) =

∫ s

a

g (s, x ,m(x)) dx

is called a Volterra integral equation of the �rst kind (VFK). It is
linear if

g (s, x ,m(x)) = g (s, x) ·m(x)

in which case g (s, x) is the kernel of the equation. Otherwise it is
a nonlinear VFK.

In our example d (s) =
∫ s

a
m (x) dx , so g (s, x) = 1, a = 0.Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Fredholm Integral Equations of the First Kind (IFK)

Another important class of problems:

De�nition

An equation of the form

d (s) =

∫ b

a

g (s, x ,m(x)) dx

is called a Fredholm integral equation of the �rst kind (IFK). It is
linear if

g (s, x ,m(x)) = g (s, x) ·m(x)

in which case g (s, x) is the kernel of the equation. If, further,

g (s, x) = g(s − x)

the equation is called a convolution equation.Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



Example

Consider our example d (s) =
∫ s

0
m (x) dx , again. De�ne the

Heaviside function H (w)to be 1 if w is nonnegative and 0
otherwise. Then

d (s) =

∫ s

0

m (x) dx =

∫ ∞

0

H (s − x)m (x) dx .

Thus, this Volterra integral equation can be viewed as a IFK and a
convolution equation as well with convolution kernel
g (s, x) = H (s − x).
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Text Example

Gravitational anomaly at ground level due to buried wire mass

where

Ground level is the x-axis.

h (x): the depth of the wire at x .

ρ (x): is the density of the wire at x .

d (s): measurement of the anomaly at position s, ground level.

This problem leads to linear and (highly) nonlinear inverse problems

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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The Example

To estimate the mass of a planet of known radius while on the
(airless) surface:

Observe a projectile thrown from some point and measure its
altitude.

From this we hope to estimate the acceleration a due to gravity and
then use Newton's laws of gravitation and motion to obtain from

GMm

R2
= ma

that

M =
aR2

G
.
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Equations of Motion

A Calculus I problem:

What is the vertical position y (t) of the projectile as a function of
time?

Just integrate the constant acceleration twice to obtain

y (t) = m1 + m2t −
1

2
at2.

We follow the text and write at time tk , we have observed value dk
and

dk = y (tk) = m1 + t m2 −
1

2
t2m3

where k = 1, 2, . . . ,m. This is a system of m equations in 3
unknowns. Here

m1 is initial y -displacement

m2 is initial velocity

m3 is acceleration due to gravity.



Matrix Form

Matrix Form of the System:

(Linear Inverse Problem): Gm = d.

Here G =


1 t1 − t21

2

1 t2
t22
2

...
...

...

1 tm
t2m
2

, m =

 m1

m2

m3

 and d =


d1
d2
...
dm

, but
we shall examine the problem in the more general setting where G
is m × n, m is n × 1 and d is m × 1.



A Speci�c Problem

The exact solution:

m = [10, 100, 9.8]T = (10, 100, 9.8) .

Spacial units are meters and time units are seconds. It's easy to
simulate an experiment. We will do so assuming an error
distribution that is independent and normally distributed with mean
µ = 0 and standard deviation σ = 16.

>randn('state',0)
>m = 10
>sigma = 16
>mtrue = [10,100,9.8]'
>G = [ones(m,1), (1:m)', -0.5*(1:m)'.^2]
>datatrue = G*mtrue;
>data = datatrue + sigma*randn(m,1);
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Solution Methods

We could try

The most naive imaginable: we only need three data points.
Let's use them to solve for the three variables.
Let's really try it with Matlab and plot the results for the exact
data and the simulated data.

A better idea: We are almost certain to have error. Hence, the
full system will be inconsistent, so we try a calculus idea:
minimize the sum of the norm of the residuals. This requires
development. The basic problem is to �nd the least squares
solution m = mL2 such that

(Least Squares Problem): ‖d− GmL2‖
2

2
= min

m
‖d− Gm‖2

2

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Key Results for Least Squares

Theorem

The least squares problem has a solution for any m × n matrix G

and data d, namely any solution to the normal equations

GTGm = GTd

Proof sketch:

Show product rule holds for products of matrix functions.

Note f (m) = ‖d− Gm‖2 is a nonnegative quadratic function
in m, so must have a minimum

Find the critical points of f by setting ∇f (m) = 0.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



Key Results

Theorem

If m × n matrix G has full column rank, then the least squares

solution is unique, and is given by

mL2 =
(
GTG

)−1

GTd

Proof sketch:

Show GTG has zero kernel, hence is invertible.

Plug into normal equations and solve.

Least Squares Experiments:
Use Matlab to solve our speci�c problem with experimental data
and plot solutions. Then let's see why the theorems are true. There
remains:

Problem:

How good is our least squares solution? Can we trust it? Is there a
better solution?
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Quality of Least Squares

View the ProbStatLectures notes regarding point estimation. Then
we see why this fact is true:

Theorem

Suppose that the error of ith coordinate of the residual is normally

distributed with mean zero and standard deviation σi . Let
W = diag (1/σ1, . . . , 1/σm) and GW = WG, dW = Wd. Then the

least squares solution to the scaled inverse problem

GWm = dW

is a maximum liklihood estimator to the parameter vector.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



An Example

Let's generate a problem as follows

>randn('state',0)

>m = 10

>sigma = blkdiag(8*eye(3),16*eye(3),24*eye(4))

>mtrue = [10,100,9.8]'

>G = [ones(m,1), (1:m)', -0.5*(1:m)'.^2]

>datatrue = G*mtrue;

>data = datatrue + sigma*randn(m,1);

>G = [ones(m,1), (1:m)', -0.5*(1:m)'.^2]

>datatrue = G*mtrue;

>data = datatrue + sigma*randn(m,1);

% compute the least squares solution without

% reference to sigma, then do the scaled least squares

% and compare....also do some graphs



Quality of Least Squares
A very nontrivial result which we assume:

Theorem

Let G have full column rank and m the least squares solution for

the scaled inverse problem. The statistic

‖dW − GWm‖2
2

=
m∑
i=1

(
di − (GmL2)i

)2
/σ2

i

in the random variable d has a chi-square distribution with

ν = m − n degrees of freedom.

This provided us with a statistical assessment (the chi-square test)
of the quality of our data. We need the idea of the p-value of the
test, the probability of obtaining a larger chi-square value than the
one actually obtained:

p =

∫ ∞

χ2
obs

fχ2 (x) dx .



Interpretation of p

As a random variable, the p-value is uniformly distributed between
zero and one. This can be very informative:

1 �Normal sized� p: we probably have an acceptable �t

2 Extremely small p: data is very unlikely, so model Gm = d

may be wrong or data may have larger errors than estimated.

3 Extremely large p (i.e., very close to 1): �t to model is almost
exact, which may be too good to be true.
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Uniform Distributions

Reason for uniform distribution:

Theorem

Let X have a continuous c.d.f. F (x) such that F (x)is strictly
increasing where 0 < x < 1. Then the r.v. Y = F (X ) is uniformly

distributed on the interval (0, 1)

Proof sketch:

Calculate P (Y ≤ y) using fact that F has an inverse function
F−1.

Use the fact that P (X ≤ x) = F (x) to prove that
P (Y ≤ y) = y .

Application: One can use this to generate random samples for X .
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An Example

Let's resume our experiment from above. Open the script
Lecture8.m and have a look. Then run Matlab on it and resume
calculations.
> % now set up for calculating the p-value of the test under both
scenarios.
>chiobs1 = norm(data - G*mapprox1)^2

>chiobs2 = norm(W*(data - G*mapprox2))^2

>help chis_pdf

>p1 = 1 - chis_cdf(chiobs1,m-n)

>p2 = 1 - chis_cdf(chiobs2,m-n)

% How do we interpret these results?

% Now put the bad estimate to the real test

How do we interpret these results?
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More Conceptual Tools

Examine and use the MVN theorems of ProbStatLectures to
compute the expectation and variance of the r.v. m, where m is
the modi�ed least squares solution, G has full column rank and d is
a vector of independent r.v.'s.

Each entry of m is a linear combination of independent
normally distributed variables, since

m =
(
GT
WGW

)−1

GT
WdW .

The weighted data dW = Wd has covariance matrix I .

Deduce that Cov (m) =
(
GT
WGW

)−1
.

Note simpli�cation if variances are constant:

Cov (m) = σ2
(
GTG

)−1
.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



Conceptual Tools

Next examine the mean of m and deduce from the facts that

E [dW ] = Wdtrue and GWmtrue = dtrue

and MVN facts that

E [m] = mtrue

Hence, modi�ed least squares solution is an unbiased

estimator of mtrue .

Hence we can construct a con�dence interval for our
experiment:

m± 1.96 · diag (Cov (m))1/2

What if the (constant) variance is unknown? Student's t to
the rescue!

How do we interpret these results?
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Outliers

These are discordant data, possibly due to other error or simply bad
luck. What to do?

Use statistical estimation to discard the outliers.

Use a di�erent norm from ‖·‖
2
. The 1-norm is an alternative,

but this makes matters much more complicated! Consider the
optimization problem

‖d− GmL2‖1 = min
m
‖d− Gm‖

1

How do we interpret these results?
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A Motivating Example: Integral Equations

Contanimant Transport

Let C (x , t) be the concentration of a pollutant at point x in a
linear stream, time t, where 0 ≤ x <∞ and 0 ≤ t ≤ T . The
de�ning model

∂C

∂t
= D

∂2C

∂x2
− v

∂C

∂x
C (0, t) = Cin (t)

C (x , t) → 0, x →∞
C (x , 0) = C0 (x)
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Solution

Solution:

In the case that C0 (x) ≡ 0, the explicit solution is

C (x ,T ) =

∫ T

0

Cin (t) f (x ,T − t) dt,

where

f (x , τ) =
x

2
√

πDτ3
e−(x−vτ)2/(4Dτ)



The Inverse Problem

Problem:

Given simultaneous measurements at time T , to estimate the
contaminant in�ow history. That is, given data

di = C (xi ,T ) , i = 1, 2, . . . ,m,

to estimate
Cin (t) , 0 ≤ t ≤ T .



Some Methods

More generally

Problem:

Given the IFK

d (s) =

∫ b

a

g (x , s)m (x) dx

and a �nite sample of values d (si ), i = 1, 2, . . . ,m, to estimate
parameter m (x).

Methods we discuss at the board:

1 Quadrature

2 Representers

3 Other Choices of Trial Functions
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Quadrature

Basic Ideas:

Approximate the integrals

di ≈ d(si ) =

∫ b

a

g (si , x)m (x) dx ≡
∫ b

a

gi (x)m (x) dx , i = 1, 2, . . . ,m

(where the representers or data kernels gi (x) = gi (si , x)) by

Selecting a set of collocation points xj , j = 1, 2, . . . , n. (It
might be wise to ensure n < m.)

Select an integration approximation method based on the
collocation points.

Use the integration approximations to obtain a linear system
Gm = d in terms of the unknowns mj ≡ m (xj),
j = 1, 2, . . . , n.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



Brief Introduction to Inverse Theory
Chapter 2: Linear Regression

Chapter 3: Discretizing Continuous Inverse Problems
Chapter 4: Rank De�ciency and Ill-Conditioning

Chapter 5: Tikhonov Regularization
Chapter 5: Tikhonov Regularization

Motivating Example
Quadrature Methods
Representer Method
Generalizations
Method of Backus and Gilbert

Representers

Rather than focusing on the value of m at individual points, take a
global view that m (x) lives in a function space which is spanned by
the representer functions g1 (x) , g2 (x) , . . . , gn (x) , . . .

Basic Ideas:

Make a selection of the basis functions
g1 (x) , g2 (x) , . . . , gn (x) to approximate m (x), say

m (x) ≈
n∑

j=1

αjgj (x)

Derive a system Γm = d with a Gramian coe�cient matrix

Γi ,j = 〈gi , gj〉 =

∫ b

a

gi (x) gj (x) dx
Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



Example

The Most Famous Gramian of Them All:

Suppose the basis functions turn out to be gi (x) = x i−1,
i = 1, 2, . . . ,m, on the interval [0, 1].

Exhibit the infamous Hilbert matrix.
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Other Choices of Trial Functions

Take a still more global view that m (x) lives in a function space
spanned by a spanning set which may not be the representers!

Basic Ideas:

Make a selection of the basis functions
h1 (x) , h2 (x) , . . . , hn (x) with linear span Hn (called �trial
functions� in the weighted residual literature) to approximate
m (x), say

m (x) ≈
n∑

j=1

αjhj (x)

Derive a system Gα = d with a coe�cient matrix

Gi ,j = 〈gi , hj〉 =

∫ b

a

gi (x) hj (x) dx

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



Trial Functions

Orthogonal Idea:

An appealing choice of basis vectors is an orthonormal (o.n.) set of
nonzero vectors. If we do so:

‖m (x)‖ =
n∑

j=1

α2

j

ProjHn
(gi (x)) =

∑n
j=1
〈gi , hj〉 hj (x), i = 1, . . . ,m.

Meaning of ith equation:
〈
ProjHn

(gi ) ,m
〉

= di
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Backus-Gilbert Method

Problem: we want to estimate m (x) at a single point x̂ using the
available data, and do it well. How to proceed?

Basic Ideas:

Write m (x̂) ≈ m̂ =
∑m

j=1
cjdj and dj =

∫ b

a
gj (x)m (x) dx .

Reduce the integral conditions to m̂ =
∫ b

a
A (x)m (x) dx with

A (x) =
∑m

j=1
cjgj (x).

Ideally A (x) = δ (x − x̂). What's the next best thing?
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Backus-Gilbert Equations

Constraints on the averaging kernel A (x):

First, an area constraint: total area
∫ b

a
A (x) dx = 1. Set

qj =
∫ b

a
gj (x) dx and get qTc = 1.

Secondly, minimize second moment
∫ b

a
A (x)2 (x − x̂)2 dx .

This becomes a quadratic programming problem: objective
function quadratic and constraints linear.

In fact, it is convex, i.e., objective function matrix is positive
de�nite. We have a tool for solving this: quad_prog.m.

One could constrain the variance of the estimate m̂, say
m∑
i=1

c2i σ2

i ≤ ∆, where σi is the known variance of di . This is a

more complicated optimization problem.
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A Case Study for the EPA

The Problem:

A factory on a river bank has recently been polluting a previously
unpolluted river with unaccepable levels of polychlorinated biphenyls
(PCBs). We have discovered a plume of PCB and want to estimate
its size to assess damage and �nes, as well as con�rm or deny
claims about the amounts by the company owning the factory.

We control measurements but have an upper bound on the
number of samples we can handle, that is, at most 100.

Measurements may be taken at di�erent times, but at most 20
per time at di�erent locales.

How would we design a testing procedure that accounts for
and reasonably estimates this pollution dumping using the
contaminant transport equation as our model?
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Basic Theory of SVD

Theorem

(Singular Value Decomposition) Let G be an m × n real matrix.

Then there exist m ×m orthogonal matrix U, n × n orthogonal

matrix V and m × n diagonal matrix S with diagonal entries

σ1 ≥ σ2 ≥ . . . ≥ σq, with q = min{m, n}, such that UTGV = S.

Moreover, numbers σ1, σ2, . . . , σq are uniquely determined by G.

De�nition

With notation as in the SVD Theorem, and Up, Vp the matrices
consisting of the �rst p columns of U, V , respectively, and Sp the
�rst p rows and columns of S , where σp is the last nonzero singular
value, then the Moore-Penrose pseudoinverse of G is

G † = VpS
−1

p UT
p ≡

p∑
j=1

1

σj
VjU

T
j .
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Matlab Knows It

Carry out these calculations in Matlab:
> n = 6

> G = hilb(n);

> svd(G)

>[U,S,V] = svd(G);

>U'*G*V - S

>[U,S,V] = svd(G,'econ');

> % try again with n=16 and then G=G(1:8)

> % what are the nonzero singular values of G?
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Applications of the SVD

Use notation above and recall that the null space and column space
(range) of matrix G are N (G ) = {x ∈ Rn |Gx = 0} and

R (G ) = {y ∈ Rm | y = Gx, x ∈ Rn} = span {G1,G2, . . . ,Gn}

Theorem

(1) rank (G ) = p and G =

p∑
j=1

σjUjV
T
j

(2)N (G ) = span {Vp+1,Vp+2, . . . ,Vn},R (G ) =
span {V1,V2, . . . ,Vp}
(3)N

(
GT

)
= span {Up+1,Up+2, . . . ,Um},R (G ) =

span {U1,U2, . . . ,Up}
(4) m† = G †d is the least squares solution to Gm = d of minimum

2-norm.
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Heart of the Di�culties with Least Squares Solutions

Use the previous notation, so that G is m × n with rank p and
SVD, etc as above. By data space we mean the vector space Rm

and by model space we mean Rn.

No Rank De�ciency:

This means that p = m = n. Comments:

This means that null space of both G and GT are trivial (both
{0}).
Then there is a perfect correspondence between vectors in
data space and model space:

Gm = d, m = G−1d = G †d.

This is the ideal. But are we out of the woods?

No, we still have to deal with data error and ill-conditioning of
the coe�cient matrix (remember Hilbert?).



Heart of the Di�culties with Least Squares Solutions

Use the notation m† = G †d.

Row Rank De�ciency:

This means that d = n < m. Comments:

This means that null space of G is trivial, but that of GT is
not.

Here m† is the unique least squares solution.

And m† is the exact solution to Gm = d exactly if d is in the
range of G .

But m is insensitive to any translation d + d0 with
d0 ∈ N

(
G †)



Heart of the Di�culties with Least Squares Solutions

Column Rank De�ciency:

This means p = m < n. Comments:

This means that null space of GT is trivial, but that of G is
not.

Here m† is a solution of minimum 2-norm.

And m† +m0 is also a solution to Gm = d for any
m0 ∈ N (G ).

So d is insensitive to any translation m† +m0 with
m0 ∈ N (G ).



Heart of the Di�culties with Least Squares Solutions

Row and Column Rank De�ciency:

This means p < min {m, n}. Comments:

This means that null space of both G and GT are nontrivial.

Here m† is a least squares solution.

We have trouble in both directions.



Covariance and Resolution

De�nition

The model resolution matrix for the problem Gm = d is
Rm = G †G .

Consequences:

Rm = VpV
T
p , which is just In if G has full column rank.

If Gmtrue = d, then E [m†] = Rmmtrue

Thus, the bias in the gereralized inverse solution is
E [m†]−mtrue = (Rm − I )mtrue = −V0V

T
0
mtrue with

V = [VpV0].

Similarly, in the case of identically distributed data with
variance σ2, the covariance matrix is

Cov (m†) = σ2G † (
G †)T = σ2

∑p
i=1

ViV
T

i

σ2
i

.

From expected values we obtain a resolution test: if a
diagonal entry are close to 1, we claim good resolution of that
coordinate, otherwise not.
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Instability of Generalized Inverse Solution

The key results:

For n × n square matrix G

cond2 (G ) = ‖G‖
2

∥∥G−1
∥∥
2

= σ1/σn.

This inspires the de�nition: the condition number of an m × n

matrix G is σ1/σq where q = min {m, n}.
Note: if σq = 0, the condition number is in�nity. Is this notion
useful?

If data d vector is perturbed to d′, resulting in a perturbation
of the generalized inverse solution m† to m′

†, then

‖m′
†−m†‖

2

‖m†‖2
≤ cond (G )

‖d′−d‖2
‖d‖2

.
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Stability Issues

How these facts a�ect stability:

If cond (G ) is not too large, then the solution is stable to
perturbations in data.

If σ1 � σp, there is a potential for instability. It is diminished
if the data itself has small components in the direction of
singular vectors corresponding to small singular values.

If σ1 � σp, and there is a clear delineation between �small�
singular values and the rest, we simple discard the small
singular values and treat the problem as one of smaller rank
with �good� singular values.

If σ1 � σp, and there is no clear delineation between �small�
singular values and the rest, we have to discard some of them,
but which ones? This leads to regularization issues. In any
case, any method that discards small singular values produces
a truncated SVD (TSVD) solution.
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Linear Tomography Models
Note: Rank de�cient problems are automatically ill-posed.

Basic Idea:

A ray emanates from one known point to another along a known
path `, with a detectable property which is observable data. These
data are used to estimate a travel property of the medium. For
example, let the property be travel time, so that:

Travel time is given by t =

∫
`

dt

dx
dx =

∫
`

1

v (x)
dx

We can linearize by making paths straight lines.

Discretize by embedding the medium in a square (cube) and
subdividing it into regular subsquares (cubes) in which we
assume �slowness� (parameter of the problem) is constant.

Transmit the ray along speci�ed paths and collect temporal
data to be used in estimating �slowness�.
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Example 1.6 and 4.1

The �gure for this experiment (assume each subsquare has sides of
length 1, so the size of the large square is 3× 3):

1211 13

21 22 23

31 32 33

t1 t2 t3

t4

t

t5

6

t8

t7
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Example 1.6 and 4.1
Corresponding matrix of distances G (rows of G represent distances
along corresponding path, columns the ray distances across each
subblock) and resulting system:

Gm =



1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1√
2 0 0 0

√
2 0 0 0

√
2

0 0 0 0 0 0 0 0
√
2





s11
s12
s13
s21
s22
s23
s31
s32
s33


=



t1
t2
t3
t4
t5
t6
t7
t8


= d

Observe: in this Example m = 8 and n = 9, so this is rank de�cient.
Now run the example �le for this example. We need to �x the path.
Assuming we are in the directory MatlabTools, do the following:
>addpath('Examples/chap4/examp1')

>path
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What Are They?

These problems arise due to ill-conditioning of G, as opposed to a

rank de�ciency problem. Theoretically, they are not ill-posed, like
the Hilbert matrix. But practically speaking, they behave like
ill-posed problems. Authors present a hierarchy of sorts for a
problem with system Gm = d. These order expressions are valid as
j →∞.

O
(

1

jα

)
with 0 < α ≤ 1, the problem is mildly ill-posed.

O
(

1

jα

)
with α > 1, the problem is moderately ill-posed.

O
(
e−αj

)
with 0 < α, the problem is severely ill-posed.
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A Severly Ill-Posed Problem

The Shaw Problem:

An optics experiment is performed by dividing a circle using a
vertical transversal with a slit in the middle. A variable intensity
light source is placed around the left half of the circle and rays pass
through the slit, where they are measured at points on the right
half of the circle.

Measure angles counterclockwise from the x-axis, using
−π/2 ≤ θ ≤ π/2 for the source intensity m (θ), and
−π/2 ≤ s ≤ π/2 for destination intensity d (s).

The model for this problem comes from di�raction theory:
d (s) =∫ π/2

−π/2
(cos (s) + cos (θ))2

(
sin (π (sin (s) + sin (θ)))

π (sin (s) + sin (θ))

)2

m (θ) dθ.
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The Shaw Problem

s

d(s)

m( )θ
θ

ds

dθ

s 1

θ1

Two Problems:

The forward problem: given source intensity m (θ), compute
the destination intensity d (s).

The inverse problem: given destination intensity d (s),
compute the source intensity m (θ).

It can be shown that the inverse problem is severly ill-posed.



The Shaw Problem

How To Discretize The Problem:

Discretize the parameter domain −π/2 ≤ θ ≤ π/2 and the
data domain −π/2 ≤ s ≤ π/2 into n subintervals of equal size
∆s = ∆θ = π/n.

Therefore, and let si , θi be the midpoints of the i-th
subintervals:

si = θi = −π

2
+

(i − 0.5) π

n
, i = 1, 2, . . . , n.

De�ne

Gi ,j = (cos (si ) + cos (θj))
2

(
sin (π (sin (si ) + sin (θj)))

π (sin (si ) + sin (θj))

)2

∆θ

Thus if mj ≈ m (θj), di ≈ d (si ), m = (m1,m2, . . . ,mn) and
d = (d1, d2, . . . , dn), then discretization and the midpoint rule
give Gm = d, as in Chapter 3.



The Shaw Problem
Now we can examine the example �les on the text CD for this
problem. This �le lives in 'MatlabTools/Examples/chap4/examp1'.
First add the correctd path, then open the example �le examp.m for
editing. However, here's an easy way to build the matrix G without
loops. Basically, these tools were designed to help with 3-D
plotting.

> n = 20

> ds = pi/n

> s = linspace(ds/2, pi - ds/2,n)

> theta = s;

> [S, Theta] = meshgrid(s,theta);

>G = (cos(S) + cos(Theta)).^2 .* (sin(pi*(sin(S) + ...

sin(Theta)))./(pi*(sin(S) + sin(Theta))).^2*ds;

> % want to see G (s, θ)?
> mesh(S,Theta,G)

> cond(G)

> svd(G)

> rank(G)
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Tikhonov Regularization and Implementation via SVD

Basics

Regularization:

This means �turn an ill-posed problem into a well-posed 'near by'
problem�. Most common method is Tikhonov regularization, which
is motivated in context of our possibly ill-posed Gm = d, i.e.,
minimize ‖Gm− d‖
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. This is the Tikhonov regularization

of the original problem.

Problem: �nd minima of f (x) subject to constraint
g (x) ≤ c .e function L = f (x) + λg (x), for some λ ≥ 0.
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Basics

Regularization:

All of the above problems are equivalent under mild restrictions
thanks to the principle of Lagrange multipliers:

The minima of f (x) subject to constraint g (x) ≤ c must
occur at the stationary points of function L = f (x) + λg (x),
for some λ ≥ 0 (so we could write λ = α2 to emphasize
non-negativity.)

We can see why this is true in the case of a two dimensional x
by examining contour curves.

Square the terms in the �rst two problems and we see that the
associated Lagrangians are related if we take reciprocals of α.

Various values of α give a trade-o� between the instability of
the unmodi�ed least squares problem and loss of accuracy of
the smoothed problem. This can be understood by tracking
the value of the minimized function in the form of a path
depending on δ, ε or α.
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Basics

Regularization:

All of the above problems are equivalent under mild restrictions
thanks to the principle of Lagrange multipliers:

Minima of f (x) occur at stationary points of f (x) (∇f = 0.)

Minima of f (x) subject to constraint g (x) ≤ c must occur at
stationary points of function L = f (x) + λg (x), for some
λ ≥ 0 (we can write λ = α2 to emphasize non-negativity.)

We can see why this is true in the case of a two dimensional x
by examining contour curves.

Square the terms in the �rst two problems and we see that the
associated Lagrangians are related if we take reciprocals of α.

Various values of α give a trade-o� between the instability of
the unmodi�ed least squares problem and loss of accuracy of
the smoothed problem. This can be understood by tracking
the value of the minimized function in the form of a path
depending on δ, ε or α.
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