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Chapter 5: Tikhonov Regularization
5.2: SVD Implementation of Tikhonov Regularization. SVD
Implementation
Remark. To solve the Tikhonov regularized problem, �rst recall:

• ∇
(
‖Gm− d‖2

2 + α2 ‖m‖2
2

)
=

(
GT Gm−GTd

)
+ α2m

• Equate to zero and these are the normal equations for the sys-
tem

[
G
αI

]
m =

[
d
0

]
, or (

GT G + α2I
)
m = GTd

• To solve, calculate (
GT G + α2I

)−1
GT = V


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σ2
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. . .
σp

σ2
p+α2

0
. . .

UT

SVD Implementation
From the previous equation we obtain that the Moore-Penrose in-

verse and solution to the regularized problem are given by

G†
α =

p∑
j=1

σj

σ2
j + α2

VjU
T
j

mα = G†d =

p∑
j=1

σ2
j

σ2
j + α2

(
UT

j d
)

σj

Vj

which specializes to the generalized inverse solution we have seen in
the case that G is full column rank and α = 0. (Remember d = Uh so
that h = UTd.)
The Filter Idea
Date: Lecture 28, April 27, 2006
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2 INSTRUCTOR: THOMAS SHORES DEPARTMENT OF MATHEMATICS
Remark. About Filtering: The idea is simply to ��lter� the singular
values of our problem so that (hopefully) only �good� ones are used.

• We replace the σi by f (σi). The function f is called a �lter.
• f (σ) = 1 simply uses the original singular values.
• f (σ) =

σ2

σ2 + α2
is the Tikhonov �lter we have just developed.

• f (σ) = max {sgn (σ − ε) , 0} is the TSVD �lter with singular
values smaller than ε truncated to zero.

The L-curve
Remark. L-curves are one tool for choosing the regularization paramter
α:

• Make a plot of the curve (‖mα‖2 , ‖Gmα − d‖2)
• Typically, this curve looks to be asymptotic to the axes.
• Choose the value of α closest to the corner.
• Caution: L-curves are NOT guaranteed to work as a regular-
ization strategy.

• An alternative: (Morozov's discrepancy principle) Choose α so
that the mis�t ‖Gmα − d‖2 is the same size as the data noise
‖δd‖2.

Historical Notes
Remark. Tikhonov's original interest was in operator equations

d (s) =

∫ b

a

k (s, t) m (t) dt

or d = Km where K is a compact (bounded = continuous) linear
operator from one Hilbert space H1 into another H2. In this situation:

• Such an operator K : H1 → H2 has an adjoint operator
K∗ : H2 → H1 (analogous to transpose of matrix operator.)

• Least squares solutions to min ‖Km− d‖ are just solutions to
the normal equation K∗Km = K∗d (and exist.)

• There is a Moore-Penrose inverse operator K† such that m =
K†d is the least squares solution of least 2-norm. But this
operator is generally unbounded (not continuous.)

Historical Notes
Remark. More on Tikhonov's operator equation:

• The operator (K∗K + αI) is bounded with bounded inverse and
the regularized problem (K∗K + αI) m = K∗d has a unique
solution mα.
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• Given that δ = ‖δd‖ is the noise level and that the problem ac-
tually solved is (K∗K + αI) m = K∗dδ with dδ = d + δd yield-
ing mδ

αTikhonov de�nes a regular algorithm to be a choice
α = α (δ) such that

α (δ) → 0 and mδ
α(δ) → K†d as δ → 0.

• Morozov's discrepancy principle is a regular algorithm.
Finish Section 5.2 by exploring the Example 5.1 �le, which constructs

the L-curve of the Shaw problem using tools from the Regularization
Toolbox.

5.3: Resolution, Bias and Uncertainty in the Tikhonov Solu-
tion.
Resolution Matrix

Remark. De�nition: Resolution matrix for a regularized problem starts
with this observation:

• Let G\ ≡
(
GT G + α2I

)−1
GT (generalized inverse)

• Then mα = G\d =

p∑
j=1

fj

(
UT

j d
)

σj

Vj = V FS†UTd.

• Model resolution matrix: Rm,α = G\G = V FV T

• Data resolution matrix: Rd,α = GG\ = UFUT

The Example 5.1 �le constructs the model resolution matrix of the
Shaw problem and shows poor resolution in this case.

5.4: Higher Order Tikhonov Regularization. Higher Order Reg-
ularization
Remark. Basic Idea We can think of the regularization term α2 ‖m‖2

2

as favoring minimizing the 0-th order derivative of a function m (x)
under the hood. Alternatives:

• Minimize a matrix approximation to m′ (x). This is a �rst order
method.

• Minimize a matrix approximation to m′′ (x). This is a second
order method.

• These lead to new minimization problems: to minimize
‖Gm− d‖2

2 + α2 ‖Lm‖2
2 .

• How do we resolve this problem as we did with L = I?
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Example Matrices
We will explore approximations to �rst and second derivatives at the

board.
Key Idea: Generalized SVD (GSVD)

Theorem. Let G be an m × n matrix and L a p × n matrix with
m ≥ n ≥ min {p, n} = q. Then there exist m×m orthogonal U , p× p
orthogonal V and n× n nonsingular matrix X such that

UT GX = diag {λ1, λ2, . . . , λn} = Λ = Λm,n

V T LX = diag {µ1, µ2, . . . , µq} = M = Mp,n

ΛT Λ + MT M = 1.

Also 0 ≤ λ1 ≤ λ2 · · · ≤ λn ≤ 1 and 1 ≥ µ1 ≥ µ2 · · · ≥ µq ≥ 0.
The numbers γi = λi/µi, i = 1, . . . , rank (L) ≡ r are called the

generalized singular values of G and L and 0 ≤ γ1 ≤ γ2 · · · ≤ γr.
Application to Higher Order Regularization
The minimization problem is equivalent to the problem(

GT G + α2LT L
)
m = GTd

which has solution forms

mα,L =

p∑
j=1

γ2
j

γ2
j + α2

(
UT

j d
)

λj

Xj +
n∑

j=p+1

(
UT

j d
)
Xj

Filter factors: fj =
γ2

j

γ2
j + α2

, j = 1, . . . , p, fj = 1, j = p + 1, . . . , n.
Thus

mα,L =
n∑

j=1

fj

(
UT

j d
)

λj

Xj.

Vertical Seismic Pro�ling Example
Remark. The Experiment: Place sensors at vertical depths zj, j =
1, . . . , n, in a borehole, then:

• Generate a seizmic wave at ground level, t = 0.
• Measure arrival times dj = t (zj), j = 1, . . . , n.
• Now try to recover the slowness function s (z), given

t (z) =

∫ z

0

s (ξ) dξ =

∫ ∞

0

s (ξ) H (z − ξ) dξ

• It should be easy: s (z) = t′ (z).
• Hmmm.....or is it?
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Do Example 5.4-5.5 from the CD.
Model Resolution

Remark. Model Resolution Matrix: As usual, Rm,α,L = G\G.

• We can show this is XFX−1.
TGSVD and GCV.
Remark. TGSVD: We have seen this idea before. Simply apply it to
formula above, remembering that the generalized singular values are
reverse ordered.

• Formula becomes

mα,L =

p∑
j=k

γ2
j

γ2
j + α2

(
UT

j d
)

cj

Xj +
n∑

j=p+1

(
UT

j d
)
Xj

• Key question: where to start k.
GCV

Remark. Basic Idea: Comes from statistical �leave-one-out� cross val-
idation.

• Leave out one data point and use model to predict it.
• Sum these up and choose regularization parameter α that min-
imizes the sum of the squares of the predictive errors

V0 (α) =
1

m

m∑
k=1

((
Gm

[k]
α,L

)
k
− dk

)2

.

• One can show a good approximation is

V0 (α) =
m ‖Gmα − d‖2

Tr (I −GG\)2

Example 5.6-7 gives a nice illustration of the ideas. Use the CD script
to explore it. Change the startup�le path to Examples/chap5/examp6,
then examp7.
Error Bounds. Error Bounds
Remark. Error Estimates: They exist, even in the hard cases where
there is error in both G and d.

• In the simpler case, G known exactly, they take the form

‖mα − m̃α‖2

‖mα‖2

≤ κα

∥∥∥d− d̃
∥∥∥

2

‖Gmα‖2

where κα is inversely proportional to α.
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Error Bounds

Remark. More Estimates:
• Suppose that the true model mtrue is �smooth� in the sense that
there exists vector w such that (p = 1) mtrue = GTw or (p = 2)
mtrue = GT Gw. Let ∆ = δ/ ‖w‖ and γ = 1 if p = 1 and γ = 4

if p = 2. Then the choice α̂ = (∆/γ)1/(p+1) is optimal in the
sense that we have the error bound∥∥mtrue −G\d

∥∥
2

= γ (p + 1) α̂p = O
(
∆

p
p+1

)
.

• This is about the best we can do. Its signi�cance: the best we
can hope for is about 1/2 or 2/3 of the signi�cant digits in the
data.

Chapter 6: Iterative Methods � A Brief Discussion
Image Recovery

Remark. Problem: An image is blurred and we want to sharpen it.
Let intensity function Itrue (x, y)de�ne the true image and Iblurred (x, y)
de�ne the blurred image.

• A typical model results from convolving true image with Gauss-
ian point spread function
Iblurred (x, y) =

∫ ∞

−∞

∫ ∞

−∞
Itrue (x− u, y − v) Ψ (u, v) du dv

where Ψ (u, v) = e−(u2+v2)/(2σ2).
• Think about discretizing this over an SVGA image (1024×768).
• But the discretized matrix should be sparse!

Sparse Matrices and Iterative Methods
Remark. Sparse Matrix: A matrix with su�ciently many zeros that we
should pay attention to them.

• There are e�cient ways of storing such matrices and doing linear
algebra on them.

• Given a problem Ax = b with A sparse, iterative methods be-
come attractive because they usually only require storage of A,
x and some auxillary vectors, and saxpy, gaxpy, dot algorithms
� (�scalar a*x+y� , �general A*x+y�, �dot product�)

• Classical methods: Jacobi, Gauss-Seidel, Gauss-Seidel SOR and
conjugate gradient.

• Methods especially useful for tomographic problems: Kacz-
marz's method, ART (algebraic reconstruction technique).
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Yet Another Regularization Idea

Remark. To regularize in face of iteration: Use the number of iteration
steps taken as a regularization parameter.

• Conjugate gradient methods are designed to work with SPD
coe�cient matrices A in the equation Ax = b.

• So in the unregularized least squares problem GT Gm = GTd
take A = GT G and b = GTd, resulting in the CGLS method,
in which we avoid explicitly computing GT G.

• Key fact: in exact arithmetic, if we start at m(0) = 0, then∥∥m(k)
∥∥ is monotone increasing in k and

∥∥Gm(k) − d
∥∥ is mono-

tonically decreasing in k. So we can make an L-curve in terms
of k.

Do Example 6.3 from the CD. Change startup�le path to Exam-
ples/chap6/examp3

Chapter 7: Additional Regularization Techniques
7.1: Using Bounds as Constraints. Regularization...Sort Of
Remark. Basic Idea: Use prior knowledge about the nature of the so-
lution to restrict it:

• Most common restrictions: on the magnitude of the parameter
values. Which leads to the problem:

• Minimize f (m)
subject to l ≤ m ≤ u.

• One could choose f (m) = ‖Gm− d‖2(BVLS)
• One could choose f (m) = cT · mwith additional constraint
‖Gm− d‖2 ≤ δ.

Example 3.3
Remark. Contaminant Transport Let C (x, t) be the concentration of a
pollutant at point x in a linear stream, time t, where 0 ≤ x < ∞ and
0 ≤ t ≤ T . The de�ning model

∂C

∂t
= D

∂2C

∂x2
− v

∂C

∂x
C (0, t) = Cin (t)

C (x, t) → 0, x →∞
C (x, 0) = C0 (x)

Solution
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Remark. Solution: In the case that C0 (x) ≡ 0, the explicit solution is

C (x, T ) =

∫ T

0

Cin (t) f (x, T − t) dt,

where

f (x, τ) =
x

2
√

πDτ 3
e−(x−vτ)2/(4Dτ)

Inverse Problem
Remark. Problem: Given simultaneous measurements at time T , to
estimate the contaminant in�ow history. That is, given data

di = C (xi, T ) , i = 1, 2, . . . ,m,

to estimate
Cin (t) , 0 ≤ t ≤ T.

Change the startup�le path to Examples/chap7/examp1 execute it
and examp.
7.2: Maximum Entropy Regularization. A Better Idea (?)

Remark. Entropy: E (m) = −
n∑

j=1

mj ln (wjmj), w a vector of positive

weights.
• Motivated by Shannon's information theory and Bolzmann's
theory of entropy in statistical mechanics. A measure of uncer-
tainty about which message or physical state will occur.

• Shannon's entropy function for a probability distribution {pi}n
i=1

is H (p) = −
n∑

i=1

pi ln (pi).
• Bayesian Maximimum Entropy Principle: least biased model is
one that maximizes entropy subject to constraints of testable
information like bounds or average values of parameters.

Maximum Entropy Regularization
Remark. Maximize Entropy: That is, our version. So problem looks
like:

• Maximize −
n∑

j=1

mj ln (wjmj)

• Subject to ‖Gm− d‖2 ≤ δ and m ≥ 0.
• In absence of extra information, take wi = 1. Lagrange multi-
pliers give:
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• Minimize ‖Gm− d‖2
2 + α2

n∑
j=1

mj ln (wjmj),

• subject to m ≥ 0.
Change the startup�le path to Examples/chap7/examp2 execute it

and examp.
7.3: Total Variation. TV Regularization
We only consider total variation regularization from this section.

Remark. Regularization term: DV (m) =
n−1∑
j=1

|mj+1 −mj| = ‖Lm‖1,

where L is the matrix used in �rst order Tikhonov regularization.
• Problem becomes: minimize ‖Gm− d‖2

2 + α ‖Lm‖1

• Better yet: minimize ‖Gm− d‖1 + α ‖Lm‖1.
• Equivalently: minimize

∥∥∥∥[
G
αL

]
m−

[
d
0

]∥∥∥∥
1

.
• Now just use IRLS (iteratively reweighted least squares) to solve
it and an L-curve of sorts to �nd optimal α.

•

Total Variation
Remark. Key Property:

• TV doesn't smooth discontinuities as much as Tikhonov regu-
larization.

Change startup�le path to Examples/chap7/examp3 execute it and
examp.

Chapter 9: Nonlinear Regression
Newton's Method. Basic Problems
Remark. Root Finding: Solve the system of equations represented in
vector form as

F (x) = 0.

for point(s) x∗ for which F (x∗) = 0.
• Here F (x) = (f1 (x) , . . . , fm (x)) and x = (x1, . . . , xm)

• Gradient notation: ∇fj (x) =

(
∂fj

∂x1

(x) , . . . ,
∂fj

∂xm

(x)

)
.

• Jacobian notation: ∇F (x) = [∇f1 (x) , . . . ,∇fm (x)]T =

[
∂fi

∂xj

]
i,j=1,...m

.
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Basic Problems

Remark. Optimization: Find the minimum value of scalar valued func-
tion f (x), where x ranges over a feasible set Ω.

• Set F (x) = ∇f (x) =

(
∂f

∂x1

(x) , . . . ,
∂f

∂xm

(x)

)
• Hessian of f : ∇ (∇f (x)) ≡ ∇2f (x) =

[
∂2f

∂xi∂xj

]
.

Taylor Theorems
First Order Suppose that f : Rn → R has continuous second par-

tials and x∗,x ∈ Rn. Then f (x) = f (x∗) + ∇f (x∗)T (x− x∗) +
O

(
‖x− x∗‖2) , x → x∗.
Second Order Suppose that f : Rn → R has continuous third par-

tials and x∗,x ∈ Rn. Then f (x) = f (x∗) + ∇f (x∗)T (x− x∗) +
1

2
(x− x∗)T ∇2f (x∗) (x− x∗) +O

(
‖x− x∗‖3) , x → x.

(See Appendix C for versions of Taylor's theorem with weaker hy-
potheses.)
Newton Algorithms
Root Finding Input F, ∇F, x0, Nmax

for k = 0, ..., Nmax

xk+1 = xk −∇F
(
xk

)−1
F

(
xk

)
if xk+1,xk pass a convergence test
return(xk)

end
end
return(xNmax)
Convergence Result

Theorem. Let x∗ be a root of the equation F (x) = 0, where F,x
are m-vectors, F has continuous �rst partials in some neighborhood
of x∗ and ∇F (x∗) is non-singular. Then Newton's method yields a
sequence of vectors that converges to x∗, provided that x0 is su�ciently
close to x∗. If, in addition, F has continuous second partials in some
neighborhood of x∗, then the convergence is quadratic in the sense that
for some constant K > 0,∥∥xk+1 − x∗

∥∥ ≤ K
∥∥xk − x∗

∥∥2
.

Newton for Optimization
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Remark. Bright Idea: We know from calculus that where f (x) has a
local minimum, ∇f = 0. So just let F (x) = ∇f (x) and use Newton's
method.

• Result is iteration formula: xk+1 = xk −∇2f
(
xk

)−1∇f
(
xk

)
• We can turn this approach on its head: root �nding is just a
special case of optimization, i.e., solving F (x) = 0 is the same
as minimizing f (x) = ‖F (x)‖2.

• Downside of root �nding point of view of optimization: saddle
points and local maxima x also satisfy ∇f (x) = 0.

• Upside of optimization view of root �nding: if F (x) = 0 doesn't
have a root, minimizing f (x) = ‖F (x)‖2 �nds the next best
solutions � least squares solutions!

• In fact, least squares problem for‖Gm− d‖2 is optimization!
Remarks on Newton

Remark. About Newton: This barely scratches the surface of optimiza-
tion theory (take Math 4/833 if you can!!).

• Far from a zero, Newton does not exhibit quadratic conver-
gence. It is accelerated by a line search in the Newton direction
−∇F

(
xk

)−1
F

(
xk

) for a point that (approximately) minimizes
a merit function like m (x) = ‖F (x)‖2.

• Optimization is NOT a special case of root �nding. There are
special characteristics of the min f (x) problem that get lost if
one only tries to �nd a zero of ∇f .

• For example, −∇f is a search direction that leads to the method
of steepest descent. This is not terribly e�cient, but well un-
derstood.

• There is an automatic merit function, namely f (x), in any
search direction. Using this helps avoid saddle points, maxima.

Gauss-Newton and Levenberg-Marquardt Methods. Gauss-Newton
and Levenberg-Marquardt
Remark. The Problem: Given a function F (x) = (f1 (x) , . . . , fm (x)),
minimize f (x) =

m∑
k=0

fk (x)2 = ‖F (x)‖2.

• Newton's method can be very expensive, due to derivative eval-
uations.

• For starters, one shows ∇f (x) = 2 (∇F (x))T F (x)

• Then, ∇2f (x) = 2 (∇F (x))T ∇F (x) + Q (x), where Q (x) =∑m
k=1 fk (x)∇2fk (x) contains all the second derivatives.
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LM

Remark. The Problem: Given a function F (x) = (f1 (x) , . . . , fm (x)),
minimize f (x) =

m∑
k=0

fk (x)2 = ‖F (x)‖2.

• This inspires a so-called quasi-Newton method, which approxi-
mates the Hessian as ∇2f (x) ≈ 2 (∇F (x))T ∇F (x) .

• Thus, Newton's method morphs into the Gauss-Newton (GN)
method

xk+1 = xk −
((
∇F

(
xk

))T ∇F
(
xk

))−1 (
∇F

(
xk

))T
F

(
xk

)
• There's a problem here. See it?

LM
Remark. The Problem: ∇F (x) may not have full column rank.

• A remedy: regularize the Newton problem to
((
∇F

(
xk

))T ∇F
(
xk

)
+ λkI

)
p =

−
(
∇F

(
xk

))T
F

(
xk

) with λ suitably chosen positive number
for p = x− xk

• In fact, Lagrange multipliers show we are really solving a con-
strained problem of minimizing

∥∥∇F
(
xk

)
p + F

(
xk

)∥∥2subject
to a constraint ‖p‖ ≤ δk. Of course, δk determines λk and
vice-versa.

• The idea is to choose λk at each step: Increase it if the reduction
in f (x) was not as good as expected, and decrease it if the
reduction was better than expected. Otherwise, leave it alone.

LM
Remark. More on LM:

((
∇F

(
xk

))T ∇F
(
xk

)
+ λkI

)
p = −

(
∇F

(
xk

))T
F

(
xk

).
• For small λk, LM becomes approximately (

∇F
(
xk

))T ∇F
(
xk

)
p =

−
(
∇F

(
xk

))T
F

(
xk

) which is GN with its favorable conver-
gence rate.

• For large λk, LM becomes approximately p = − 1

λk

(
∇F

(
xk

))T
F

(
xk

),
which is a steepest-descent step, slow but convergent.

• For large λk, LM becomes approximately p = − 1

λk

(
∇F

(
xk

))T
F

(
xk

),
which is a steepest-descent step, slow but convergent.

• For small residuals, LM (and GN, when stable) converge super-
linearly. They tend to perform poorly on large residual prob-
lems, where the dropped Hessian terms are signi�cant.
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LM

Remark. Another Perspective on LM:
• NB: λk is not a regularizaton parameter in usual sense, but
rather a tool for e�ciently solving a nonlinear system which
itself may or may not be regularized.

• However: suppose our objective is to �nd a least squares solu-
tion to the problem F (x) = d, given output data d with error,
in the form of dδ, i.e., to minimize

∥∥F (x)− dδ
∥∥2.

• In this case, LM amounts to cycles of these three steps:
• Forward-solve: compute dk = F

(
xk

).
• Linearize: ∇F

(
xk

) (
xk+1 − xk

)
= dδ − dk.

• Regularize:
((
∇F

(
xk

))T ∇F
(
xk

)
+ αkI

)
p =

(
∇F

(
xk

))T (
dδ − dk

)
• This is a regularization technique for nonlinear problems and is
called output least squares.

Section 9.3: Statistical Aspects. Statistics
Remark. Problem is G (m) = d with least squares solution m∗ : Now
what? What statistics can we bring to bear on the problem?

• We minimize ‖F (m)‖2 =
n∑

i=1

(G (m)− di)
2

σ2
i

• Treat the linear model as locally accurate, so mis�t is ∇F =
F (m + ∆m)− F (m∗) ≈ ∇F (m∗) ∆m

• Obtain covariance matrix Cov (m∗) =
(
∇F (m∗)T ∇F (m∗)

)−1

• If σ is unknown but constant across measurements, take σi = 1

above and use for σ in 1
σ2

(
∇F (m∗)T ∇F (m∗)

)−1

the estimate

s2 =
1

m− n

m∑
i=1

(G (m)− di)
2 .

• Do con�dence intervals, χ2 statistic and p-value as in Chapter
2.

Implementation Issues. Implementation Issues
Remark. What could go wrong?

• Problem may have many local minima.
• Even if it has a unique solution, it might lie in a long �at basin.
• Analytical derivatives may not be available. This presents an
interesting regularization issue not discussed by the authors.
We do so at the board.
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• One remedy for �rst problem: use many starting points and
statistics to choose best local minimum.

• One remedy for second problem: use a better technique than
GN or LM.

• Do Example 9.2 from the CD to illustrate some of these ideas.
• If time permits, do data �ting from Great Britian population
data.

Chapter 10: Nonlinear Inverse Problems
Regularizing Nonlinear Least Squares Problems. Penalized (Damped)
Least Squares
Remark. Basic Problem: Solve G (m) = d, where G is a nonlinear
function. As usual, d will have error and this may not be a well-
posed problem. Assume variables are scaled, so standard deviations
of measurements are incorporated. So we follow the same paths as in
Chapter 5.

• Recast: minimize ‖Gm− d‖2 � unconstrained least squares.
• Recast: minimize ‖Gm− d‖2 subject to ‖Lm‖2≤ ε, where L
is a damping matrix (e.g., L = I.)

• Recast: minimize ‖Lm‖2 subject to ‖Gm− d‖2 ≤ δ.
• Recast: (damped least squares) minimize ‖Gm− d‖2

2+α2 ‖Lm‖2
2.

This is also a Tikhonov regularization of the original prob-
lem, possibly higher order.

• Method of Lagrange multipliers doesn't care if G is nonlinear,
so we can apply it as in Chapter 5 to show that these problems
are essentially equivalent.

• A big di�erence is that we can no longer derive linear normal
equations for the least squares problem.

Solution Methodology: Penalized Least Squares
Remark. Basic Idea: Regularize, then linearize.

• Regularize: ‖G (m)− d‖2
2 + α2 ‖Lm‖2

2.
• Equivalently: minimize

∥∥∥∥[
G (m)− d

αLm

]∥∥∥∥2

2

≡ ‖H (m)‖2
2.

• Linearize: Compute the Jacobian of this vector function: ∇H (m) =[
∇G (m)

αL

]
.

• The linear model of G near current guesstimate mk, with ∆m =
m−mk: G (m) ≈ G (m) +∇G (m) ∆m.
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• This leads to the system(

∇G
(
mk

)T
∇G

(
mk

)
+ α2LT L

)
∆m = −∇G

(
mk

)T (
G

(
mk

)
− d

)
− α2LT Lmk

Work through Example 10.1 of CD.
Occam's Inversion. Solution Methodology: An Output Least Squares
Remark. Basic Idea: Linearize, then regularize. Authors call this
method �Occam's inversion� � it is a special type of output least squares.

• Develop the linear model of G (m) nearmk: G (m) ≈ G
(
m

k
)
+

∇G
(
mk

)(
m−mk

)
• Linearize ‖G (m)− d‖2

2 + α2 ‖Lm‖2
2 by making the above re-

placement for G (m). Call the solution mk+1.
• This leads to the systemmk+1 =

(
∇G

(
mk

)T ∇G
(
mk

)
+ α2LT L

)−1

∇G
(
mk

)T
d̂

(
mk

),
where d̂

(
mk

)
= d−G

(
mk

)
+∇G

(
mk

)
mk.

• The algorithm is to solve this equation with initial guess m0,
but at each iteration choose the largest value of α such that
χ2

(
mk+1

)
≤ δ2. If none, pick value of α that minimizes χ2.

Stop if and when sequence converges to a solution with χ2 ≤ δ2.
Examples

Remark. Example 10.2: We are to estimate subsurface electrical con-
ductivity from above ground EM induction measurements. Used is a
Geonics EM-38. The model is complex and we treat it as a black box.
Since Jacobians are lacking, we simply use �nite di�erences to approxi-
mate them. Measurements are taken at heights of 0, 10, 20, 30, 40, 50, 75, 100
and 150 cm above the surface. subsurface is discretized into 10 layers,
each 20 cm thick with a bottom semi-in�nite layer. Now modify the
path to Examples/chap10/examp2 and run examp.

Examples
Remark. Population Example: Refer to the �le N2.pdf for background.

• It's convenient to write P (t) =
KP0

(K − P0) e−rt + P0

.
• Play with some starting points and graph the resulting model
against the observed values.

• How good is this? Can we do better? Do we need to regularize?
Is the model appropriate? Discuss.
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Which Brings Us To...

THE END
(not quite...) Final Review. Final Review
Remark. Rules of the Game:

• The �nal will have two parts.
• An in-class part that is closed book, closed notes, NO calcula-
tors, laptops, cell phones, blackberries, etc., etc. This part is
worth 80 points. This exam will be administered on Monday,
May 1, 8:30-10:30 pm.

• A take-home part that is worth 50 points. This exam will be
available on the class home page Tuesday morning. It will be
due exactly 3 days after you received a copy. It can either be
hardcopy or in the form of a pdf (or even Microsoft Word) �le
which you can email to me. You must show all your work,
including copies of any scripts that you used and their relevant
outputs.

Final Review
Remark. More Rules of the Game:

• There is to be absolutely no consultation of any kind with any-
one else other than me about the exam. If there are points of
clari�cation or errors, I will post them on our message board.

• ALL materials used in your work that have not been provided
by me for this course must be explicitly credited in your write-
up.

Final Review
Remark. Material Covered in Final:

• Lecture notes in Math492s6LecturesPostMid.pdf.
• Homework problems (fairly simple questions or problems.)
• Excludes all lecture notes material covering our intro/review
of Matlab, linear algebra and probability/statistics and pre-
midterm material per se.

• There will be 6 questions.
Sample Questions

Remark. Sample Questions:
• What is the L-curve? Describe how it is used.
• Discuss the di�erence between penalized least squares and out-
put least squares.
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Sample Questions

Remark. Sample Questions:
• Explain what second order regularization means. Why is it
describes as biased (no proofs)?

• State the GSVD Theorem and one application of it (you do not
have to prove it.) Use the statement of the theorem to describe
the generalized singular values.


