
CLASSROOM NOTES FOR APPROXIMATION THEORY

MATH 441, FALL 2009

THOMAS SHORES

Last Rev.: 9/15//09

1. Text Chapter 3 Notes

(9/10/09) Recall that from our text we have these de�nitions and Theorems. Unless other-
wise stated, we assume that A is a subset of the normed vector space B with norm ‖·‖.

De�nition. The norm of a (not necessarily linear) operatorX : B → A is the smallest number
‖X‖ such that for all f ∈ B,

‖X (f)‖ ≤ ‖X‖ · ‖f‖ ,
if such an ‖X‖ exists. In this case the operator is said to be bounded and otherwise, unbounded.

Notice that in the case of a linear operator X, i.e., X (af + bg) = aX (f)+bX (g) for scalars
a, b and f, g ∈ B, this is equivalent to the de�nition that we gave in the background notes.

De�nition. An operator X : B → A is said to be an approximation (projection) operator if
for all f ∈ B, we have

X (X (f)) = X (f) .

In the case of an approximation operator X, the quantity ‖X‖ is often called the Lebesgue
constant of the operator.

A su�cient condition for an operator to be an approximation operator is the following
(stronger) condition: for all a ∈ A,

(3.2) X (a) = a.

Most of the operators we deal with will have the property (3.2).
Next, we give a name to the distance from f to the subset cA.

De�nition. Given f ∈ B and approximant subset A, we de�ne
d∗ (f) = min

a∈A

Here is a situation in which we can actually estimate d∗ in a useful way:

Theorem. (text 3.2) If c = π/2, B = Ck [a, b] and A = Pn with 1 ≤ k ≤ n, then for any
f ∈ B,

d∗ (f) ≤ (n− k)!
n!

ck
∥∥∥f (k)

∥∥∥
∞
.

Speci�cally, the constant is Here is the connection between two of the de�nitions just dis-
cussed:

Theorem. (text 3.1) Let A be a �nite dimensional subspace of B and X : B → A a linear
operator satisfying (3.2). Then

‖f −X (f)‖ ≤ {1 + ‖X‖} d∗ (f) .
1

CLASSROOM NOTES FOR APPROXIMATION THEORY MATH 441, FALL 2009 2

OK, now let's do a bit of experimenting with a simple linear approximation operator:

Example. Let B = C1 [0, 1], A = P1, and X : B → A the interpolation operator that
interpolates f (x) at x = x0, x1, with a ≤ x0 < x1 ≤ b. Let's experiment with a reasonable
interesting function �rst and see how Theorems 3.1 and 3.2 fare. Recall that we can �nd an
interpolating polynomial p (x) = ax+b through (x0, y0) and (x1, y1) by way of the vandermonde
matrix system

ax0 + b = y0

ax1 + b = y1.

Furthermore, this is a linear operator (we checked this in class), so that text Theorem 3.1
applies. The norm of X we calculated in class to be 1.

% start with f(x) = exp(sin(3*x))

fcn = inline('exp(sin(3*x))','x')

fcnp = inline('exp(sin(3*x)).*cos(3*x)*3','x')

xnodes = (0:.01:1)';

plot(xnodes,fcn(xnodes))

hold on, grid

% start with the endpoints for interpolation nodes

p = [0,1;1,1]\fcn([0;1])

plot(xnodes,polyval(p,xnodes))

dfXf = norm(polyval(p,xnodes)-fcn(xnodes),inf)

% not so hot, so let's look for a �best approximation�

nn = 20

astar = [1,nn];

dstar = dfXf;
xgrid = linspace(0,1,nn)';

for ii = 1:nn-1

for jj = ii+1:nn

p = [xgrid(ii),1;xgrid(jj),1]\fcn([xgrid(ii);xgrid(jj)]);

d = norm(polyval(p,xnodes)-fcn(xnodes),inf);

if (d < dstar)

dstar = d;

astar = [ii,jj];

end

end

end

pstar = [xgrid(astar(1)),1;xgrid(astar(2)),1]\fcn([xgrid(astar(1));xgrid(astar(2))]);

plot(xnodes,polyval(pstar,xnodes))

dstar

% compare results to Theorem 3.1 prediction

dfXf, (1+1)*dstar

% compare results to Theorem 3.2 prediction

c = pi/2

n = 1

k = 1

dstar, factorial(n-k)/factorial(n)*c*norm(fcnp(xnodes),inf)

CLASSROOM NOTES FOR APPROXIMATION THEORY MATH 441, FALL 2009 3

Finally, here are some calculations regarding complexity of linear system solving that is
alluded to in BackgroundNotes.pdf.

n = 80; a = n*eye(n)+rand(n); b = rand(n,1);

tic; c = a\b; toc

% now repeat with n = 160, 320 and 640...how does time grow?

2. Text Chapter 4 Notes

Let's do some calculations
x = (-5:0.1:5)';
fcn = inline('1./(1+x.^2)','x')

plot(x,fcn(x))

grid, hold on

n = 5

nodes = linspace(-5,5,n)';

fnodes = fcn(nodes);

p = vander(nodes)\fnodes;grid,

pnodes = polyval(p,x);

plot(x,pnodes);% what do you think?

norm(pnodes-fcn(x),inf)

% now start over and do it with n = 10, 20

% next, look for the culprit -- close the plot window

n = 5

nodes = linspace(-5,5,n)';

prd = ones(size(x));

for ii =1:n

prd = prd.*(x - nodes(ii));

end

plot(x,prd)

hold on, grid

% now repeat the loop with n = 10, 20

3. Pade Approximations

This is a rational function approximation whose basic idea is this: Let the approximating
rational function to f ∈ CN+1 [a, b] be a rational function

r (x) =
p (x)
q (x)

=
p0 + p1x+ · · ·+ pn

1 + q1x+ · · ·+ qmxm

where 0 ∈ (a, b), N = m+ n is the �total degree� of r (x) and require that

r(j) (0) = f (j) (0) , j = 0, 1, . . . , N,

so that r (x) is something like a Taylor series approximation. This gives us N + 1 conditions
on N + 1 coe�cients p0, . . . , pn, q1, . . . , qm, so in principle we should be able to solve for all
the coe�cients (but there are no guarantees). Of course, we don't want to be in the business
of computing all those derivatives, so here's an alternate approach: Let g (x) = f (x)− r (x),
so that the derivative condition is simply that all derivatives of g up to the N -th order vanish
at x = 0. We have that

g (x) =
q (x) f (x)− p (x)

q (x)

CLASSROOM NOTES FOR APPROXIMATION THEORY MATH 441, FALL 2009 4

also has N + 1 continuous derivatives de�ned at x = 0, so has a Taylor series expansion

g (x) = g (0) +
g
′
(0)
1

x+ · · ·+ g(N) (0)
n!

xN +
g(N+1) (ξ)
(n+ 1)!

xN+1

for some ξ between 0 and x. So the derivative conditions are equivalent to requiring that xN+1

be a factor of g (x). However, the denominator has constant term 1, so x cannot be factored
from it. Therefore, we must have that xN+1 is a factor of q (x) f (x)− p (x).

Thus our strategy is to write out an expansion for f (x), say

f (x) = a0 + a1x+ · · · ,

multiply terms and require that the �rst N + 1 coe�cients of

(1 + q1x+ · · ·+ qm) (a0 + a1x+ · · ·)− (p0 + p1x+ · · ·+ cnx
n)

be zero. This won't require complicated derivatives, and can easily be done, once we have an
expansion for f . In fact, the n-th term can be written out explicitly, so the conditions are

q0 = 1,

0 =
j∑

k=0

qkaj−k − pj , j = 0, 1, . . . , N.

4. Trigonometric Polynomials

We covered the discrete Fourier series operator in class. Now let's put it to work. A review:
With the standard inner product in C [−π, π], we saw that the projection of of f (x) ∈ C [−π, π]
into the �nite dimensional subspace

Wn = span {cos kx, sin kx | 0 ≤ k ≤ n}

is the trig polynomial

q (x) =
a0

2
+

n∑
k=1

(ak cos kx+ bk sin kx) ,

where, for 0 ≤ k ≤ n,

ak =
1
π

� π

−π
f (x) cos kx dx

and, for 1 ≤ k ≤ n,

bk =
1
π

� π

−π
f (x) sin kx dx

If we use the trapezoidal method with N + 1 equally spaced nodes xj = 2π
N j on the interval

[0, 2π] (remember that the location of the interval makes no di�erence � only that it should
be of length 2π) to approximate the Fourier coe�cients ak, bk with a′k, b

′
k, then �rst and last

values agree by periodicity and we obtain

a′k =
2
N

N−1∑
j=0

f (xj) cos
(

2π
N
jk

)

b′k =
2
N

N−1∑
j=0

f (xj) sin
(

2π
N
jk

)

CLASSROOM NOTES FOR APPROXIMATION THEORY MATH 441, FALL 2009 5

First, let's create a function that actually evaluates a trig polynomial at vector argument
x. We understand that such a trig polynomial will be speci�ed by the vectors of coe�cients

a = (a1, . . . , an, a0)

b = (b1, b2, . . . , bn) .

OK, here it is:

function retval = trigeval(a,b,x)

% usage: y = trigeval(a,b,x)

% description: given vectors of trig coefficients a, b

% of length n+1 and n, respectively, and argument vector

% x, this function returns the value of the trig series

% p(x) = a(n+1)/2 + sum(a(j)*cos(j*x)+b(j)*sin(j*x),j=1..n).

%

n = length(b);

if (length(a) ~= n+1)

error('incorrect vector lengths');

end

retval = a(n+1)/2*ones(size(x));

for j = 1:n

retval = retval + a(j)*cos(j*x)+b(j)*sin(j*x);

end

Now create a script that does the work of building a discrete Fourier trig polynomial from
'myfcn.m'. It would look something like this:

% script: fouriertest.m

% description: perform some approximation experiments with

% Fourier polynomials on the function myfcn defined externally.

N = 3;

n = 1;

a = zeros(1,n+1);

b = zeros(1,n);

% construct the coefficients for myfcn

xnodes = linspace(0,2*pi,N+1);

xnodes = xnodes(1:N); % trim off 2*pi

xnodes = xnodes - pi; % let's work on [-pi,pi]

f = myfcn(xnodes);

% dispose of 0th coefficients

a(n+1) = 2*sum(f)/N;

% now the rest

for j = 1:n

a(j) = 2*f*cos(j*xnodes)'/N;

b(j) = 2*f*sin(j*xnodes)'/N;

end

% now try plotting

x = -pi:.001:pi;

CLASSROOM NOTES FOR APPROXIMATION THEORY MATH 441, FALL 2009 6

clf

plot(x,myfcn(x))

hold on, grid

plot(x,trigeval(a,b,x))

Now for some experiments:

(1) Let's start with something really simple like f (x) = sin 2x, N = 3, 4 and n from
interpolation rate

⌊
N−1

2

⌋
to N . Hmmm. Something's seriously wrong. Now try N =

5, 7.
(2) Now try f (x) = sin 2x− 0.2 ∗ cos 5x, but start with N = 5.

What's going on here? Nyquist discovered that in order to recover a periodic signal by sam-
pling, a su�cient condition is that we have a sample rate more than twice the highest frequency
(in a sinusoidal component) of the signal. It is not a necessary condition. This number is called
the Nyquist sampling rate. Recall that frequency is de�ned f = 1/T , where T is the period of
a function. In the �rst example, the highest frequency is 1/π, so our sampling rate must be
greater than 2/π. Thus in an interval of width 2π, we could sample with

N >

⌊
2π
2/π

⌋
≈ 9.87,

so N = 10 will work. However, we found that N = 5 and n = 2 worked. What went wrong
with larger n? Consider this simple example: If we sample with N = 2, we cannot distinguish
between sinx, sin 2x, sin 3x, etc. This phenonemon is called aliasing, and is well studied in
the area of signal processing.

Now consider the second example. The highest frequency occurring is 5/(2π), so the Nyquist
sampling rate gives that in an interval of width 2π a su�cient sampling number is

N >

⌊
2π

2/ (5π)

⌋
≈ 49.35.

This is far too conservative for our second example, but it would work.
Finally, let's break the rules and change the function to a square wave: f (x) = sign (x).

Experiment with increasing sample sizes. This time, settle on a trig polynomial size and
increase sampling until we are satis�ed. Draw a separate �gure for n = 5, 11, 21. Conclusions?

Note that we saw several interesting features:

(1) The discrete Fourier series does seem to converge pointwise to f (x).
(2) At the discontinuity it appears to be converging to a point half way between the left

and right-hand limits.
(3) The �bumps� near the discontinuity appears to gradually contract in width, but their

height does not go to zero. This is the so-called �Gibbs e�ect� that was observed
around the end of the nineteenth century by J. Gibbs.

5. Complex Trigonometric Polynomials

Here the trig functions are replaced the by the complex exponentials eikx, k = −n, . . . 0, . . . , n,
which turn out to be an orthogonal set of vectors in the space C [−π, π] of continuous complex-
valued functions with domain [−π, π]. One can de�ne the complex function ez in terms of the
power series for the exponential function learned in Calculus, but for our purposes, it su�ces
to use this fact as de�nition: For real x,

eix = cosx+ i sinx.

CLASSROOM NOTES FOR APPROXIMATION THEORY MATH 441, FALL 2009 7

We use the standard complex inner product

〈f, g〉 =
� π

−π
f (x) g (x)dx

and induced norm ‖f‖2 = 〈f, f〉 in this setting. Remember that to integrate a complex
function, you simply integrate its real and complex parts, that is, if f (x) = g (x)+ih (x), with
g (x) and h (x) real-valued, then� b

a
f (x) dx =

� b

a
g (x) dx+ i

� b

a
h (x) dx.

Let Wn be the �nite dimensional subspace spanned by these exponentials and, as with the
trig polynomials, we obtain the standard projection formula for the best approximation to
f (x) ∈ C [−π, π] from Wn is given by

q (x) =
n∑

k=−n
cke

ikx,

where

ck =

〈
f, eikx

〉
〈eikx, eikx〉

=
1
2π

� π

−π
f (x) e−ikxdx.

The bridge between these coe�cients and the real Fourier coe�cients consists of the follow-
ing identities for k ≥ 0, which are easily checked from de�nitions:

ak = ck + c−k

bk = i (ck − c−k)

ck =
1
2

(ak − ibk)

c−k =
1
2

(ak + ibk) .

We can approximate the ck by a trapezoidal integration using N + 1 equally spaced nodes
xj = 2π

N j on the interval [0, 2π], as with real Fourier coe�cients, and obtain the approximation
c′k to ck as

c′k =
1
N

N−1∑
j=0

f (xj) e−
2πi
N
jk.

We use the notation ωN = e2πi/N and ω= ω−1
N = ωN (check these equalities for yourself).

Let's do some experiments with Matlab:

% construct DFT matrices

N = 5

zeta = exp(-2*pi/N)

z = zeta.^(0:N-1)

help vander % this doesn't quite do what we want

F = fliplr(vander(z).'/N

Finv = N*conj(F)

F*Finv % it works!

O.K. now we are going to do some experiments that will be better handled with a script.
So start Matlab and edit 'myfcn'. Change it to a square wave on [0, 2π] by

CLASSROOM NOTES FOR APPROXIMATION THEORY MATH 441, FALL 2009 8

retval = sign(x-pi);

Next, edit 'fouriertest', or whatever you called the �le from the previous experiments. Now
save it as 'DFTtest'. Here is what you need:

% script: DFTtest.m

% description: perform some approximation experiments with complex

% Fourier polynomials on the function myfcn defined externally.

N = 17; % use odd value to get perfect match with real coefs

n = round(N/2) - 1
a = zeros(1,n+1);

b = zeros(1,n);

c = zeros(1,N);
% construct the coefficients for myfcn

xnodes = linspace(0,2*pi,N+1);

xnodes = xnodes(1:N); % trim off 2*pi

f = myfcn(xnodes);

% dispose of 0th coefficients

a(n+1) = 2*sum(f)/N;

% now the rest of real Fourier coefs

for j = 1:n

a(j) = 2*f*cos(j*xnodes)'/N;

b(j) = 2*f*sin(j*xnodes)'/N;

end

% next construct the complex coe�cients
for j = 1:N

c(j) = f*exp(-i*(j-1)*xnodes).'/N;

end

% ok, let's compare

% a(n+1) is exceptional Fourier a_0

disp('|a0 - 2*c0| =')

disp(abs(a(n+1) - 2*c(1)))

% rest of the a(k) are Fourier a_k

ac = c(2:n+1)+c(N:-1:n+2);

disp('norm(a(1:n) - (c(2:n+1)+c(N:-1:n+2)),inf) =')

disp(norm(a(1:n) - ac,inf))

ac(n+1) = 2*c(1);
% the b(k) are Fourier b_k

bc = i*(c(2:n+1)-c(N:-1:n+2));

disp('norm(b(1:n) - i*(c(2:n+1)-c(N:-1:n+2)),inf) =')

disp(norm(b(1:n) - bc,inf))

Once you have run DFTtest, try plotting:

x = 0:.01:2*pi;

plot(x,trigeval(a,b,x));

CLASSROOM NOTES FOR APPROXIMATION THEORY MATH 441, FALL 2009 9

plot(x,trigeval(ac,bc,x));

norm(imag(ac),inf)

norm(imag(bc),inf)

6. An Application of the DFT

As usual, ωN = e
2π
N
i, a primitive Nth root of unity. To recap, given periodic data [yk] =

{yk}N−1
k=0 , we obtain transformed data [Yk] = {Yk}N−1

k=0 (we're replacing c′k by Yk), and con-
versely, by way of the formulas

Yk =
1
N

N−1∑
j=0

yjω
−kj
N ≡ FN ([yk])

yk =
N−1∑
j=0

Yjω
kj
N ≡ F

−1
N ([Yk]) .

Next, let's alter the de�nition of the data [yk]. Since the data is periodic, we can interpret
it as a doubly in�nite sequence

[yk] . . . , y−j , . . . , y−1, y0, y1, . . . , yN−1, yN , . . . , yj , . . .

where we understand that in general, that if j = qN + r, with integers j, q, r and 0 ≤ r < N ,
then yj = yr. (If you know congruences, you will recognize that j ≡ r (modN).) We have the
same interpretation with transformed data [Yk], which is also periodic, given that [yk] is. Here
is a key idea:

De�nition 1. Given periodic data sets [yk] and [zk], we de�ne the convolution of these to be

[wk] = [yk] ∗ [zk] ,

where

wk =
N−1∑
j=0

ykzk−j , k ∈ Z.

The complexity of the convolution operator is 2N2, or simply O
(
N2
)
.

We can interpret polynomial multiplication as convolution in the following way: Given
polynomials

p (x) = a0 + a1x+ · · ·+ amx
m

q (x) = b0 + b1x+ · · ·+ bnx
n,

we know that
P (x)Q (x) = a0b0 + (a0b1 + a1b0)x+ · · ·+ ambnx

m+n.

The kth term is actually ∑
j+`=k

ajb`,

where 0 ≤ j ≤ m and 0 ≤ ` ≤ n. As far as complexity, we see that the complexity is about
2 (m+ 1) (n+ 1) �ops, so certainly O (mn).

Let N ≥ m+ n+ 1 and pad the vectors of coe�cients with zeros to obtain vectors

a = (a0, a1, . . . , am, 0, . . . , 0)

b = (b0, b1, . . . , bn, 0, . . . , 0)

CLASSROOM NOTES FOR APPROXIMATION THEORY MATH 441, FALL 2009 10

in the space CN . Next form the periodic data sets [ak] and [bk], form [ck] = [ak] ∗ [bk] and
observe that for 0 ≤ k ≤ m+ n,

ck =
N−1∑
j=0

ajbk−j

=
∑
j+`=k

ajb`,

Here the padded zeros ensure that 0 ≤ j ≤ m and 0 ≤ ` ≤ n. Moreover, if k > m + n, then
the padded zeros will make the sum identically 0, since one factor in each term will always be
zero. So this is exactly the same sum as for the coe�cients of the product polynomial, padded
with zeros beyond the (m+ n+ 1)th entry. We need one more key fact:

Theorem 2. If FN ([yk]) = [Yk] and FN ([zk]) = [Zk] , then

FN ([yk] ∗ [zk]) = [NYkZk]

and
[yk] ∗ [zk] = F−1

N ([NYkZk]) .

Proof. Let [wk] = [yk] ∗ [zk] and calculate

Wk =
1
N

N−1∑
j=0

(
N−1∑
`=0

y`zj−`

)
ω−kjN

=
1
N

N−1∑
`=0

N−1∑
j=0

y`zj−`

ω−kjN

=
1
N

N−1∑
`=0

y`ω
−k`
N

N−1∑
j=0

zj−`ω
−k(j−`)
N


=

1
N

N−1∑
`=0

y`ω
−k`
N

(
N−1−`∑
m=−`

zmω
−km
N

)

= N

(
1
N

N−1∑
`=0

y`ω
−k`
N

)(
1
N

N−1∑
m=0

zmω
−km
N

)
= NYkZk.

The last equality is immediate.
All of this suggests an algorithm for computing convolutions: First, apply the DFT to each

sequence, then take the coordinate-wise product of the transforms, and �nally take the inverse
transform of this product. Although we can say that the complexity is O

(
N2
)
, clearly there

is a factor of 10 or so that would seem to be too much work when contrasted with doing it
directly. So what's the point? Enter the FFT, which will reduce the work of a transform (or
inverse transform) to O (N log2N). Now this idea will become pro�table in some situations.

Let's con�rm the convolution theorem in a special case, namely for the multiplication of
p (x) = (1− x)2 and q (x) = (1− x)3 by means of the convolution trick.

N = 8
zeta = exp(-2*pi*i/N).^(0:N-1);

CLASSROOM NOTES FOR APPROXIMATION THEORY MATH 441, FALL 2009 11

F = �iplr(vander(zeta))/N;
Finv = N*conj(F);
y = [1,-2,1,0,0,0,0,0]'
z = [1,-3,3,-1,0,0,0,0]'
Y = F*y;
Z = F*z;
W = Y.*Z
w = Finv*(N*W)

7. The Fast Fourier Transform (FFT)

Description. We'll do pretty much everything you need to know about the development of
the FFT. OK, let's start with a review of the de�nition of the discrete Fourier transform
(DFT): given a data sequence (yk) of complex numbers, periodic of period N, we de�ne the
DFT of this data to be the periodic sequence (Yn) of period N given by the formula

Yk =
1
N

{
y0 + y1ω

−k
N + y2ω

−2k
N + · · ·+ yN−1ω

−(N−1)k
N

}
, k = 0, 1, . . . , N − 1

(Since the Yk are a periodic sequence, these are all the values we need to know.) Symbolically,
we write [Yk] = FN ([yk]). Now assume that N is even, say N = 2m and we can split this

sum into even and odd indexed terms and factor ω−kN from the odd terms to get that for
k = 0, 1, . . . , N − 1,

Yk =
1
2

{
Ek + ω−kN Ok

}
where

Ek = 1
m

{
y0 + y2ω

−2k
N + y4ω

−4k
N + · · ·+ yN−2ω

−(N−2)k
N

}
Ok = 1

m

{
y1 + y3ω

−2k
N + y5ω

−4k
N + · · ·+ yN−1ω

−(N−2)k
N

}
Here are some simple facts:

ω
−(k+m)
N = −ω−kN
Ek+m = Ek

Ok+m = Ok

It follows that for k = 0, 1, . . . , N/2− 1, we have these DFT doubling formulas

Yk = 1
2

{
Ek + ω−kN Ok

}
Yk+m = 1

2

{
Ek − ω−kN Ok

}
.

Observe that this essentially cuts the work of computing Yk in half, requiring about N2/2
multiplications and additions instead of N2. This observation lies at the heart of the FFT.

However, the real power of this idea is realized when we team it up with recursion. To this
end, we suppose that N is purely even, that is, N = 2p for some integer p. Now make the key
observation that calculation of the Ek and Ok's is itself a DFT. For we have that ω

2
N = ωN/2,

from which it follows that

Ek = 1
m

{
y0 + y2ω

−n
N/2 + y4ω

−2n
N/2 + · · ·+ yN−2ω

−(m−1)k
N/2

}
Ok = 1

m

{
y1 + y3ω

−n
N/2 + y5ω

−2n
N/2 + · · ·+ yN−1ω

−(m−1)k
N/2

}

CLASSROOM NOTES FOR APPROXIMATION THEORY MATH 441, FALL 2009 12

In other words, the two quantities above are simply the DFT of the pairs of the half sized
data y0, y2, . . . , yN−2 and y1, y3, . . . yN−1. Thus, we see that we can halve these two data sets
again and reduce the problem to computing four quarter sized DFTs. Recursing all the way
down to the bottom, we reduce the original problem to computing N DTFs of 1/N -th sized
data sets. It takes us p of these steps to get down to the bottom, namely size N/20 to N/21,
then N/21 to N/22, all the way down to N/2p−1 to N/2p = 1. However, at the bottom, the
DFT of a singleton data point is simply the data point itself. Are we done?

Well, not quite. This is only half the problem, because once we've reached the bottom, we
have to reassemble the data a step at a time by way of DFT doubling formulas to build the
DFT at at the top. Let's examine how we have to rearrange our original data set for this
recursion in the case p = 3, that is, N = 8. Designate levels by `.

` = 3 y0 y1 y2 y3 y4 y5 y6 y7

` = 2 y0 y2 y4 y6 y1 y3 y5 y7

` = 1 y0 y4 y2 y6 y1 y5 y3 y7

` = 0 y0 y4 y2 y6 y1 y5 y3 y7

Now we're ready to work our way back up. Notice, BTW, ` = 1 really is the same as the
bottom.

Complexity. The recursive way of thinking is very handy. For one thing, it enables us to
do a complexity analysis without much e�ort. We'll ignore the successive divisions by 2. We
could just ignore them during the computations, then at the end divide our �nal result by
2p = N. This only involves N real multiplications, which is negligible compared to the rest
of the work. Also notice that the number of multiplications for a full reconstruction is about
half the number of additions, so we'll focus on additions. (Bear in mind that we assume the
values of ωN are precomputed and available.) How much work is involved in going from the
two data sets to the single one of length 2p? Let's denote the total number of additions by
Ap. We see from the formulas for Yk and Yk+m that

Ap = 2Ap−1 + 2p

and down at the bottom A0 = 0. Recursion yields

Ap = 2Ap−1 + 2p

= 2(2Ap−2 + 2p−1) + 2p
...
= 2pA0 + p2p = N log2N

Similarly, one could count multiplications Mp recursively, with the recursion formula being

Mp = 2Mp−1 + 2p−1 − 1

(don't count multiplication by ω0
N = 1) and M0 = 0 to obtain that Mp = 1

2N (log2N − 2).

Implementation. We might be tempted to use recursion to program the algorithm. From
a practical point of view, this is usually a bad idea, because recursion, the elegant darling of
computer science a�cionados, is frequently ine�cient as a programming paradigm.

Rather, let's assume that we have decomposed that data set into the lowest level. That
process alone is interesting, so suppose we have a routine that takes an index vector 0 : N − 1

CLASSROOM NOTES FOR APPROXIMATION THEORY MATH 441, FALL 2009 13

and rearranges it in such a way that the returned index vector is what is needed to work our
way back up the recursion chain of the FFT. The syntax of the routine should be

retval=FFTsort(p)

where N = 2p.
With the routine FFTsort in hand, let's address the issue of practical coding of the FFT.

Rather than thinking from the top down (recursion), let's think from the bottom up (in-
duction). Of course, they're equivalent. It su�ces to understand how things work from the
m = N/2 to N. So let's re-examine the formulas from the point of view of DFTs. Consider
this tabular form for the relevant data:

` = p Y0 Y1 . . . YN−1

` = p− 1 E0 E1 . . . Em−1 O0 O1 . . . Om−1

Notice that the �rst half of the second row is the DFT of the �rst half of the second
level of rearranged data (like ` = 2 in our N = 8 example above). Let's call the process of
applying Fact 2 to the second row to get the �rst row DFT doubling. Back to the general
case, imagine that we're at the `th level in our reconstruction, where 0 ≤ ` < p. At this level
we have constructed 2p−` consecutive DFTs of size 2`, where each DFT is the DFT of the
corresponding data at the `th level of rearranged input data. Now we pair these DFTs up to
construct 2p−`−1 consecutive DFTs of size 2`+1. Here's a picture of what the DFT doublings
look like in our N = 8 example (start at the bottom):

` = 3 E = Y0 E = Y1 E = Y2 E = Y3 E = Y4 E = Y5 E = Y6 E = Y7

` = 2 E E E E O O O O
` = 1 E E O O E E O O
` = 0 y0 = E y4 = O y2 = E y6 = O y1 = E y5 = O y3 = E y7 = O

Keep going until we get to the top. When we get there we have reconstructed the Y ′ns.
One can envision two nested for loops that do the whole job. In fact, here's a simple Matlab
code for the FFT. All divisions by 2 are deferred to the last line, as suggested by our earlier
discussion.
FFT Algorithm:

function Y = FFTransform(y)

% usage: Y = FFTransform(y)

% description: This function accepts input vector y of length

% 2^p (NB: assumed and not checked for) to and outputs

% the DFT Y of y using the FFT algorithm.

y = y(:); % turn y into a column

N = length(y);

p = log2(N);

omegaN = exp(-pi*i/N).^(0:N-1).'; % all the omegas we need

Y = y(FFTsort(p)); % initial Y at bottom level

stride = 1;

for l=1:p

omegal = omegaN(1:N/stride:N);

stride = 2*stride;

for j=1:stride:N

CLASSROOM NOTES FOR APPROXIMATION THEORY MATH 441, FALL 2009 14

evens = Y(j:j+stride/2-1);

odds = omegal.*Y(j+stride/2:j+stride-1);

Y(j:j+stride/2-1) = evens + odds;

Y(j+stride/2:j+stride-1) = evens - odds;

end

end

Y = Y/N;

We might ask what one has to do about the inverse DFT. Recall that this transform is
given by the equation

yk =
{
Y0 + Y1ω

k
N + Y2ω

2k
N + · · ·+ YN−1ω

(N−1)k
N

}
, k = 0, 1, . . . , N − 1.

Symbolically, we write (yk) = F−1
N (Yn). This operation does what it says, that is, compute

untransformed data from transformed data. The good news is that we need do nothing more
than write a program for the FFT. The reason is that from the de�nition we can see that

yk = N
1
N

{
Y 0 + Y 1ω

−k
N + Y 2ω

−2k
N + · · ·+ Y N−1ω

−(N−1)k
N

}
, k = 0, 1, . . . , N − 1,

from which it follows that

(yk) = NFN (Y n).

Therefore, it su�ces to have an fast algorithm for the DFT and a fast algorithm for the inverse
DFT is more or less free.

8. All About Cubic Splines

We study cubic splines with a �nite number of (ordered) knots at x0, x1, . . . , xn. The space
of all such objects isS (x0, x1, . . . , xn; 4) and such an object is a function s (x) ∈ C2 [x0, xn],
such that on each subinterval [xj , xj+1], j = 0, 1, . . . , n − 1, we have s (x) = sj (x) , a cubic
polynomial de�ned for x ∈ [xj , xj+1].

General Equations for All Cubic Splines.

Here is the problem presented by knot interpolation alone.
Problem: Given a function f (x) ∈ C2 [x0, xn], �nd all cubic splines that interpolate f (x)

at the knots x0, x1, . . . , xn, that is, s (xj) = f(xj), j = 0, 1, . . . , n.
Notation:

(1) sj (x) ≡ aj + bj (x− xj) + cj (x− xj)2 + dj (x− xj)3, j = 0, 1, . . . , n-1.
(2) yj = f (xj), j = 0, 1, . . . , n.
(3) Mj = s′′ (xj), j = 0, 1, . . . , n. (The Mj 's are called the second moments of the spline.)
(4) hj = xj+1 − xj , j = 0, 1, . . . , n− 1.

Here is how we solve this problem: Start with s′′ (x) which must be a piecewise linear con-
tinuous function. Since we know its endpoint values in the subinterval [xj , xj+1], we may use
simple Lagrange interpolation to obtain

s′′j (x) =
(xj+1 − x)Mj + (x− xj)Mj+1

hj
.

CLASSROOM NOTES FOR APPROXIMATION THEORY MATH 441, FALL 2009 15

Integrate twice and we have to add in an arbitrary linear term which, for convenience we write
as follows

sj (x) =
(xj+1 − x)3Mj + (x− xj)3Mj+1

6hj
+ Cj (xj+1 − x) +Dj (x− xj) ,

where Dj and Cj are to be determined. Now di�erentiate this expression and obtain

s′j (x) =
− (xj+1 − x)2Mj + (x− xj)2Mj+1

2hj
− Cj +Dj .

For later use we note that if we shift the indices down one, we obtain

s′j−1 (x) =
− (xj − x)2Mj−1 + (x− xj−1)

2Mj

2hj−1
− Cj−1 +Dj−1.

Our strategy is to reduce the determination of every unknown to the determination of the
Mj 's. Start with the interpolation conditions for s, which implies that for j = 0, 1, . . . , n− 1,

sj (xj) = yj =
h2
j

6
Mj + Cjhj ,

so that

Cj =
yj
hj
− hjMj

6
.

Similarly, from

sj (xj+1) = yj+1 =
h2
j

6
Mj+1 +Djhj ,

we have

Dj =
yj+1

hj
− hjMj+1

6
.

Next, use the continuity of s′ (x) to obtain that for j = 1, . . . , n− 1,

s′j−1 (xj) = s′j (xj)

which translates into

h2
j−1Mj

2hj−1
− Cj−1 +Dj−1 = −

h2
jMj

2hj
− Cj +Dj

hj−1Mj

2
− yj−1

hj−1
+
hj−1Mj−1

6
+

yj
hj−1

− hj−1Mj

6
= −hjMj

2
− yj
hj

+
hjMj

6
+
yj+1

hj
− hjMj+1

6
.

After simplifying, we obtain

hj−1

6
Mj−1 +

(
hj−1

2
− hj−1

6
+
hj
2
− hj

6

)
Mj +

hj
6
Mj+1 =

yj+1

hj
− yj
hj

+
yj−1

hj−1
− yj
hj−1

,

that is,

hj−1

6
Mj−1 +

(
hj−1 + hj

3

)
Mj +

hj
6
Mj+1 = f [xj , xj+1]− f [xj−1, xj] .

Thus we are two equations short of what we need to determine the n+1 unknownsM0,M1, . . . ,Mn.

CLASSROOM NOTES FOR APPROXIMATION THEORY MATH 441, FALL 2009 16

Standard Form for the De�ning Cubics.

Notice that if we express the cubic polynomials de�ning s (x) in standard form, then for
j = 0, 1, . . . , n− 1, we have

sj (x) = aj + bj (x− xj) + cj (x− xj)2 + dj (x− xj)3 ,

s′j (x) = bj + 2cj (x− xj) + 3dj (x− xj)2 ,
s′′j (x) = 2cj + 3dj (x− xj) .

We can use these equations along with our earlier description of sj (x) to obtain that for
j = 0, 1, . . . , n− 1,

aj = f (xj)

bj = f [xj , xj+1]−
hj
6

(2Mj +Mj+1)

cj =
Mj

2

dj =
1

6hj
(Mj+1 −Mj) .

These are the formulas that we need to put the spline in standard PP form.

Extra Conditions to Uniquely De�ne the Interpolating Cubic Spline.

Clamped (complete) cubic spline. De�ne the spline s (x) = sc (x) by the two additional condi-
tions

s′ (x0) = f ′ (x0) , s′ (xn) = f ′ (xn) .
Use the formula for s′ (x) to obtain additional equations

h0

3
M0 +

h0

6
M1 = f [x0, x1]− f ′ (x0)

hn−1

6
Mn−1 +

hn−1

3
Mn = f ′ (xn)− f [xn−1, xn] .

The resulting system has symmetric positive de�nite coe�cient matrix, from which it follows
that there is a unique clamped cubic spline interpolating f (x) at the knots of the spline. The
system is (the convention is that blank entries are understood to have value zero)

h0
3

h0
6

h0
6

h0+h1 h1
6

. . .
. . .

. . .
hn−2

6
hn−2+hn−1 hn−1

6
hn−2

6
hn−1

3




M0

M1
...

Mn−1

Mn

 =


f [x0, x1]− f ′ (x0)
f [x1, x2]− f [x0, x1]

...
f [xn−1, xn]− f [xn−2, xn−1]

f ′ (xn)− f [x0, x1]


Error analysis leads to this theorem:

Theorem 3. If f ∈ C4 [a, b], knots are de�ned as a = x0 < x1 < · · · < xn = b, h =
max0≤j≤n−1 (xj+1 − xj), and sc (x) is the clamped cubic spline for f , then for x ∈ [a, b] and
constants cj, j = 0, 1, 2, where c =

(
5

384 ,
1
24 ,

3
8

)
, such that∣∣∣f (j) (x)− s(j)c (x)
∣∣∣ ≤ cjh4−j

∥∥∥f (4)
∥∥∥
∞
.

Another striking fact is that cubic spline minimize �wiggles� in the following sense.

CLASSROOM NOTES FOR APPROXIMATION THEORY MATH 441, FALL 2009 17

Theorem 4. Among all g (x) ∈ C2 [a, b] interpolating f (x) ∈ C2 [a, b] at the nodes a = x0 <
x1 < · · · < xn = b, and f ′ (x) at a and b, the choice g (x) = sc (x) minimizesf� b

a

(
g′′ (x)

)2
dx.

Natural cubic spline. De�ne the spline s (x) = snat (x) by the two additional conditions

s′′ (x0) = 0, s′′ (xn) = 0.

Obtain additional equations

M0 = 0
Mn = 0.

The resulting system has symmetric positive de�nite coe�cient matrix, from which it follows
that there is a unique clamped cubic spline interpolating f (x) at the knots of the spline. The
system is

1
h0
6

h0+h1 h1
6

. . .
. . .

. . .
hn−2

6
hn−2+hn−1 hn−1

6
1




M0

M1
...

Mn−1

Mn

 =


0

f [x1, x2]− f [x0, x1]
...

f [xn−1, xn]− f [xn−2, xn−1]
0

 .
One can obtain similar error bounds as with clamped cubic splines, but of course not as good.

�Not-a-knot� cubic spline. De�ne the spline s (x) = snk (x) to be the cubic interpolating spline
at knots x0by the two additional conditions

s (x1) = f (x1) , s (xn−1) = f (xn−1) .

One obtain two additional equations which again give a linear system with a unique solution
by evaluating the expression for s (x) (in terms of moments Mj) at the nodes x1 and xn−1. In
the limit, as x1 → x0 and xn−1 → xn, the not-a-knot cubic spline tends to the clamped cubic
spline.

As a �nal example, estimate error on this function

f (x) =
(

1
10
x3 − x2 + x

)
sin (x) , 0 ≤ x ≤ 2π

using the various cubic splines. Tools for constructing these three splines are the function �les
CCSpp.m, NCSpp.m and NKCSpp.m. These are located in the �le PPfcns.m, but they are
also unpacked along with all the other functions from PPfcns.m in the folder PPfncs to be
found in Course Materials.

For example, here is how to construct the natural cubic spline for f (x) and plot it along
with the plot of f (x). You might �nd it more helpful to plot the error. This could be helpful
for deciding how to add knots or change their location. First edit 'myfcn.m' to the following:

retval = (0.1*x.^3 - x.^2 + x).*sin(x);

Then do the following in Matlab:

knots = linspace(0, 2*pi, 6);

pp = NCSpp(knots,myfcn(knots));

CLASSROOM NOTES FOR APPROXIMATION THEORY MATH 441, FALL 2009 18

x = 0:0.001:2*pi;

plot(x, myfcn(x))

hold on, grid

plot(x, PPeval(pp,x))

References

[1] M.J.D. Powell, Approximation Theory and Methods, Cambridge University Press, Cambridge, 1981.
[2] T. Shores, Applied Linear Algebra and Matrix Analysis, Springer, New York, 2007.

