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Exercise 1. Show that the subset P of C|[a, b] consisting of all polynomial functions is a
subspace of C|a, b] and that the subset P,, consisting of all polynomials of degree at most n
on the interval [a, b] is a subspace of P.

SOLUTION. (5) Certainly the set P is nonempty, since it contains the zero polynomial.
Let p (z), q () be polynomials of degree at most n, the larger of the two degrees. By padding
with zero coefficients if necessary, we can assume that they have the forms

p(z) =ap+ ax+ -+ a,z"
q(x) =by+bix+---+bya",

so that adding them together gives
p(x)+q(x) = (ag+bo) + (a1 +b)x+ -+ (a, +c,)a" €P
and multiplying p (x) by the scalar ¢ gives
cp (x) = cag + carx + - -+ + cap,z”™ € P.

Hence, by the subspace test, P is a subpace of C'[a, b].

The proof that P, is a subspace is essentially the same as the one we have just given with
P in place of P,.

Exercise 2. Show that P, is a finite dimensional vector space of dimension n, but that
P is not a finite dimensional space, that is, does not have a finite vector basis (linearly
independent spanning set).

SOLUTION. (4) The space P, is spanned by the finite set 1,z,2%,..., 2" and is therefore
finite dimensional.

If P were finite dimensional, every polynomial would be a linear combination of a fixed
finite number of polynomials. However, addition and scalar multiplication do not increase
the degree of a polynomial, so every polynomial would have degree no more than the largest
degree that occurs in this spanning set. Since x™ has degree n for arbitrarily large n, this is
impossible, so P cannot be finite dimensional.

Exercise 3. Show that the uniform norm on C|a, b] satisfies the norm properties.

SOLUTION. (4) Let ¢ be a scalar and f (z),¢g(x) € C[a,b].

Certainly || f]|, > 0, with equality if and only if the largest value of | f (z)|on [a, b] is zero,
that is f (z) = 0.

Next, we have

lef (2)|| = max |ef (z)] = max |c|[f ()| = |¢] max [f (z)| = | [|f]| -

a<z<b a<x<b a<z<b

Finally,



Next, we have

IF (@) + 9 @) = max | (2) + g (@) < max {|f (@) +lg @)} < max |f @)+ max |g ()] = £+l

a<z<b

Thus the three norm laws are satisfied.

Exercise 4. Show that for positive r and vy € V', a normed linear space, the ball B, (vy)
is a convex set. Show by example that it need not be strictly convex.

SOLUTION. (4) If v,w € B, (vy), then we have

IAZV+ (1 =N w—vo| =||Av=2Avg+ (1 = X)) w — (1 = X) vg||
< AV = Avol| + [[(1 = A) w — (1 = A) vo|
S AV =vol[ + (1 = A) [w — o
<A+ (1=XNr=r
Hence any convex combination is in this set, so it is convex.

A counterexample would be the unit ball B; (0) in R? with the infinity topology. Note
that no point along the boundary segment connecting (1, —1) to (1,1) is in the interior of
the unit ball, though these two points are in the ball.

Exercise 5. Confirm that p; (r) = z and py (z) = 32% — 1 are orthogonal elements of

C'[—1, 1] with the standard inner product and determine whether the following polynomials
belong to span {p; (), p2 ()} using Theorem 3.17 of ClassroomNotes.

(a) 2 (b) 1+ 2 — 322 (¢) 1+ 3z — 322
SOLUTION. (6) Calculate these products

(p1,p2) = /_1 z (322 = 1) de =0
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Now calculate the combinations as in Theorem 3.17, and we see that the answers are (a) no,
(b) yes, (c) yes.

<1 + 3z — 3x2,p2> =



3

Exercise 6. Show that differentiation is a linear operator on V"= C* (R) , the space of
functions defined on the real line that are infinitely differentiable.

SOLUTION. (4) By definition, if f (z) € V, then so is f’ (), so certainly differentiation
maps V into V. Now just check the usual properties of differentiation from elementary
calculus:

(f (@) +g(2)) = f () + 4 (2)
(cf () = cf' (x),
which proves the linear properties for the operator of differentiation.
Exercise 7. Show that the operator 7' : C'[0,1] — R given by T'(f) = fol f(z)dx is a
linear operator.
SOLUTION. (3) By definition, if f(z) € V, then folf(x) dx is a real number, so cer-

tainly integration maps V into R. Now just check the usual properties of integration from
elementary calculus:

/Ol(f(x)+9(x))d$z/olf(x)dx+/01g(x)dx

/Olcf(x)dx:c/olf(x)d:c,

which proves the linear properties for the operator of integration.

Exercise 8. Show that every normed linear space V' with norm ||-|| is a metric space with
metric given by

d(u,v) = [lu—vl.

SOLUTION. (5) Let u,v,w € V. If d(u,v) = 0, then |ju — v|| = 0, from which it follows
by the first norm property that u = v.

Next, by the second property of norms

d(u,v) =[u—-v|=[-1(u=-v)[=|v-u|=d(uv).

Finally, by the triangle inequality for norms and the definition of d we have

d(u,w) = flu-wl=flu-—w+w—v| <|u-w|+|[w-v|]=d(w)+d(Ww,v),

which is the third metric property. So V' is a metric space, as required.



