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Exercise 1. Show that the subset P of C[a, b] consisting of all polynomial functions is a
subspace of C[a, b] and that the subset Pn consisting of all polynomials of degree at most n
on the interval [a, b] is a subspace of P .
Solution. (5) Certainly the set P is nonempty, since it contains the zero polynomial.

Let p (x), q (x) be polynomials of degree at most n, the larger of the two degrees. By padding
with zero coe�cients if necessary, we can assume that they have the forms

p (x) = a0 + a1x+ · · ·+ anx
n

q (x) = b0 + b1x+ · · ·+ bnx
n,

so that adding them together gives

p (x) + q (x) = (a0 + b0) + (a1 + b1)x+ · · ·+ (an + cn)xn ∈ P

and multiplying p (x) by the scalar c gives

cp (x) = ca0 + ca1x+ · · ·+ canx
n ∈ P .

Hence, by the subspace test, P is a subpace of C [a, b].
The proof that Pn is a subspace is essentially the same as the one we have just given with
P in place of Pn.
Exercise 2. Show that Pn is a �nite dimensional vector space of dimension n, but that
P is not a �nite dimensional space, that is, does not have a �nite vector basis (linearly
independent spanning set).
Solution. (4) The space Pn is spanned by the �nite set 1, x, x2, . . . , xn and is therefore

�nite dimensional.
If P were �nite dimensional, every polynomial would be a linear combination of a �xed

�nite number of polynomials. However, addition and scalar multiplication do not increase
the degree of a polynomial, so every polynomial would have degree no more than the largest
degree that occurs in this spanning set. Since xn has degree n for arbitrarily large n, this is
impossible, so P cannot be �nite dimensional.
Exercise 3. Show that the uniform norm on C[a, b] satis�es the norm properties.
Solution. (4) Let c be a scalar and f (x) , g (x) ∈ C [a, b].
Certainly ‖f‖∞ ≥ 0, with equality if and only if the largest value of |f (x)|on [a, b] is zero,

that is f (x) ≡ 0.
Next, we have

‖cf (x)‖ = max
a≤x≤b

|cf (x)| = max
a≤x≤b

|c| |f (x)| = |c| max
a≤x≤b

|f (x)| = |c| ‖f‖∞ .

Finally,
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Next, we have

‖f (x) + g (x)‖ = max
a≤x≤b

|f (x) + g (x)| ≤ max
a≤x≤b

{|f (x)|+ |g (x)|} ≤ max
a≤x≤b

|f (x)|+ max
a≤x≤b

|g (x)| = ‖f‖∞+‖g‖∞ .

Thus the three norm laws are satis�ed.
Exercise 4. Show that for positive r and v0 ∈ V , a normed linear space, the ball Br (v0)

is a convex set. Show by example that it need not be strictly convex.
Solution. (4) If v,w ∈ Br (v0), then we have

‖λv + (1− λ)w − v0‖ = ‖λv − λv0 + (1− λ)w − (1− λ)v0‖
≤ ‖λv − λv0‖+ ‖(1− λ)w − (1− λ)v0‖
≤ λ ‖v − v0‖+ (1− λ) ‖w − v0‖
≤ λr + (1− λ) r = r.

Hence any convex combination is in this set, so it is convex.
A counterexample would be the unit ball B1 (0) in R2 with the in�nity topology. Note

that no point along the boundary segment connecting (1,−1) to (1, 1) is in the interior of
the unit ball, though these two points are in the ball.
Exercise 5. Con�rm that p1 (x) = x and p2 (x) = 3x2 − 1 are orthogonal elements of

C [−1, 1] with the standard inner product and determine whether the following polynomials
belong to span {p1 (x) , p2 (x)} using Theorem 3.17 of ClassroomNotes.

(a) x2 (b) 1 + x− 3x2 (c) 1 + 3x− 3x2

Solution. (6) Calculate these products

〈p1, p2〉 =

∫ 1

−1

x
(
3x2 − 1

)
dx = 0

〈p1, p1〉 =

∫ 1

−1

x2dx =
2

3

〈p2, p2〉 =

∫ 1

−1

(
3x2 − 1

) (
3x2 − 1

)
dx =

8

5〈
x2, p1

〉
=

∫ 1

−1

x2xdx = 0

〈
x2, p2

〉
=

∫ 1

−1

x2
(
3x2 − 1

)
=

8

15〈
1 + x− 3x2, p1

〉
=

∫ 1

−1

(
1 + x− 3x2

)
xdx =

2

3〈
1 + x− 3x2, p2

〉
=

∫ 1

−1

(
1 + x− 3x2

) (
3x2 − 1

)
= −8

5〈
1 + 3x− 3x2, p1

〉
=

∫ 1

−1

(
1 + 3x− 3x2

)
xdx = 2

〈
1 + 3x− 3x2, p2

〉
=

∫ 1

−1

(
1 + 3x− 3x2

) (
3x2 − 1

)
= −8

5

Now calculate the combinations as in Theorem 3.17, and we see that the answers are (a) no,
(b) yes, (c) yes.
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Exercise 6. Show that di�erentiation is a linear operator on V = C∞ (R) , the space of
functions de�ned on the real line that are in�nitely di�erentiable.
Solution. (4) By de�nition, if f (x) ∈ V , then so is f ′ (x), so certainly di�erentiation

maps V into V . Now just check the usual properties of di�erentiation from elementary
calculus:

(f (x) + g (x))′ = f ′ (x) + g′ (x)

(cf (x))′ = cf ′ (x) ,

which proves the linear properties for the operator of di�erentiation.
Exercise 7. Show that the operator T : C [0, 1] → R given by T (f) =

∫ 1

0
f (x) dx is a

linear operator.
Solution. (3) By de�nition, if f (x) ∈ V , then

∫ 1

0
f (x) dx is a real number, so cer-

tainly integration maps V into R. Now just check the usual properties of integration from
elementary calculus: ∫ 1

0

(f (x) + g (x)) dx =

∫ 1

0

f (x) dx+

∫ 1

0

g (x) dx∫ 1

0

cf (x) dx = c

∫ 1

0

f (x) dx,

which proves the linear properties for the operator of integration.
Exercise 8. Show that every normed linear space V with norm ‖·‖ is a metric space with

metric given by
d (u,v) = ‖u− v‖ .

Solution. (5) Let u,v,w ∈ V . If d (u,v) = 0, then ‖u− v‖ = 0, from which it follows
by the �rst norm property that u = v.
Next, by the second property of norms

d (u,v) = ‖u− v‖ = ‖−1 (u− v)‖ = ‖v − u‖ = d (u,v) .

Finally, by the triangle inequality for norms and the de�nition of d we have

d (u,w) = ‖u−w‖ = ‖u−w + w − v‖ ≤ ‖u−w‖+ ‖w − v‖ = d (u,w) + d (w,v) ,

which is the third metric property. So V is a metric space, as required.


