Name: Score: Instructions: Show your work in the spaces provided below for full credit. You must clearly identify answers and show supporting work to receive any credit. Exact answers (e.g., π) are preferred to inexact (e.g., 3.14). Make all obvious simplifications, e.g., 0 rather than $\sin \pi$. Point values of problems are given in parentheses. Notes or text in any form are not allowed. The only electronic equipment allowed is a calculator. (10) **1.** (Exer. 5.2.3) Use the eigenvalue method to find the general solution to the IVP $x_1' = 3x_1 + 4x_2$, $x_2' = 3x_1 + 2x_2$, $x_1(0) = x_2(0) = 1$. (You may assume that one eigenvalue is -1 with corresponding eigenvector $\mathbf{v} = \begin{bmatrix} 1, -1 \end{bmatrix}^T$. Solution. The system in question is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}' = \begin{bmatrix} 3 & 4 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ with characteristic equation $$0 = \begin{vmatrix} 3 - \lambda & 4 \\ 3 & 2 - \lambda \end{vmatrix} = (3 - \lambda)(2 - \lambda) - 3 \cdot 4 = \lambda^2 - 5\lambda - 6 = (\lambda + 1)(\lambda - 6), \text{ so } \lambda = -1, 6.$$ Eigenvalue $\lambda = 6$ gives eigenvector $\mathbf{v} = (a, b)$ with $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3-6 & 4 \\ 3 & 2-6 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -3a+4b \\ 3a-4b \end{bmatrix}$, so if we allow b to be arbitrary, we obtain $a = \frac{4}{3}\vec{b}$ $\mathbf{v} = (\frac{4}{3}b, b) = (\frac{4}{3}, 1)\vec{b}$. Take b = 3 and obtain solution $\begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \mathbf{v}e^{6t} = \begin{vmatrix} 4 \\ 3 \end{vmatrix} e^{6t}$. Eigenvalue $\lambda = -1$ gives eigenvector $\mathbf{v} = (a,b)$ with $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3--1 & 4 \\ 3 & 2--1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 4a+4b \\ 3a+3b \end{bmatrix}$, so obtain $\mathbf{v} = (b, -b) = (1, -1) b$. Take b=1 and obtain solution $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{v}e^{-t} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-t}$. Thus, the general solution is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 4 \\ 3 \end{bmatrix} e^{6t}$. Evaluate at t = 0 and use the initial condition to obtain $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + c_2 \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} c_1 + 4c_2 \\ -c_1 + 3c_2 \end{bmatrix}$. Add equations to obtain $c_2 = \frac{2}{7}$, so $c_1 = \frac{6}{7} - 1 = -\frac{1}{7}$ and the solution is $x_1(t) = -\frac{1}{7}e^{-t} + \frac{8}{7}e^{6t}$, $x_2(t) = \frac{1}{7}e^{-t} + \frac{6}{7}e^{6t}$. (10) **2.** (Exer. 5.2.8) Use the eigenvalue method to find the general solution to the system $x_1' = x_1 - 5x_2, \ x_2' = x_1 - x_2.$ SOLUTION. The system in question is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}' = \begin{bmatrix} 1 & -5 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ with characteristic equation $$0 = \begin{vmatrix} 1 - \lambda & -5 \\ 1 & -1 - \lambda \end{vmatrix} = -(1 + \lambda)(1 - \lambda) - (-5) = \lambda^2 - 1^2 + 4 = \lambda^2 + 4 \text{ with roots } \lambda = \pm 2i.$$ The eigenvalue $\lambda = 2i$ gives eigenvector $\mathbf{v} = (a, b)$ with $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 - 2i & -5 \\ 1 & -1 - 2i \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} (1 - 2i)a - 5b \\ a - (1 + 2i)b \end{bmatrix}$, so if we allow b to be arbitrary, we obtain a = (1 + 2i)b and solution $\mathbf{v} = ((1 + 2i)b, b) = (1 + 2i, 1)b$. Take b = 1 and obtain complex solution $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{v}e^{2it} = \begin{bmatrix} 1 + 2i \\ 1 \end{bmatrix} (\cos 2t + i\sin 2t) = \begin{bmatrix} \cos 2t + i\sin 2t + 2i\cos 2t - 2\sin 2t \\ \cos 2t + i\sin 2t \end{bmatrix} = \begin{bmatrix} \cos 2t + i\sin 2t + 2i\cos 2t - 2\sin 2t \\ \cos 2t + i\sin 2t \end{bmatrix}$ $= \begin{bmatrix} \cos 2t - 2\sin 2t \\ \cos 2t \end{bmatrix} + i \begin{bmatrix} \sin 2t + 2\cos 2t \\ \sin 2t \end{bmatrix}, \text{ which gives two independent real solutions (take real and imaginary parts of this complex solution), so the general solution is}$ $$\left[\begin{array}{c} x_{1}\left(t\right)\\ x_{2}\left(t\right) \end{array}\right] = c_{1}\left[\begin{array}{c} \cos 2t - 2\sin 2t\\ \cos 2t \end{array}\right] + c_{2}\left[\begin{array}{c} \sin 2t + 2\cos 2t\\ \sin 2t \end{array}\right].$$