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Here is the integral that we worked on in class:

I =
� 0

−2

� −4y

2y2

� √z−y2
−y

1
x2 + y2

dx dz dy.

First notice that the projection of the solid along the x-axis is a region in the yz-plane described
by the outer two integrals. As y goes from −2 to 0, z runs from z = 2y2 to z = −4y.
Then, for a �xed y and z, thinking of the x-axis as �vertical�, x is allowed to run from

x = −y to x =
√
z − y2. That describes the solid D over which this becomes a triple integral.

Furthermore, you see from the inner limits that two boundary surfaces are the bottom x = −y
and top x =

√
z − y2, which up on squaring, becomes x2 + y2 = z, a paraboloid. These

surfaces intersect at −y =
√
z − y2, which upon squaring, gives z = 2y2, the lower limit for

z for a given y in the integral above. The cylinder z = −4y is a �vertical side� relative to the
x-axis. In summary, the surfaces that actually bound the solid are x = −y and z = x2 + y2

and z = −4y.
Cylindrical coordinates look like a good candidate, so let's start by trying to get the integral

expressed with z as the �vertical� variable, that is, on the inside. We have to �gure out what
the projection of D onto the xy-plane looks like. For starters, we know that y goes from −2
to 0. We're halfway there, sort of. For a �xed y, x runs from x = −y to x =

√
z − y2. OK,

x = −y is one boundary. What is the other? Well, plug in the limits for z and get one value

x =
√

2y2 − y2 =
√
y2 = |y| = −y, since y ≤ 0 means that |y| = −y. We already have this

limit. The other one is x =
√
−4y − y2. So square both sides and obtain

x2 = −4y − y2,

x2 + y2 + 4y = 0

x2 + (y + 2)2 = 4 = 22.

This is a circle of radius 2 with center at (0,−2). So x must start at −y and �nish on the
circle we just described. Now we see that the projection R of D on the xy-plane looks like
this:
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x

−1

−2

y

−3

−4

R

x2 +(y−2)2= 4

x=−y

Finally, for a given x, y, what are the limits on z as we run a vertical line through the solid
at (x, y)? Look at the original integral form and you see that the upper limit for a give x, y of
z is z = −4y, while the lower limit comes from the boundary surface z = x2 + y2. So here is
the new integral as a double integral over R:

I =
�
R

� −4y

x2+y2

1
x2 + y2

dz dA.

OK, now ask how we can sweep over the region in polar coordinates. On the outside, θ must
go from −π/4 to 0. For a �xed θ, r must go from 0 to the boundary of the circle, which can
be expressed in the form r2 = −4r sin θ or simply r = −4 sin θ. Now use 2y2 = 2r2 sin2 θ
−4y = −4r sin θ in polar coordinates and obtain

I =
� 0

−π/4

� −2 sin θ

0

� −4r sin θ

r2

1
r2
dz r dr dθ

=
� 0

−π/4

� −4 sin θ

0
(−4 sin θ − r) dr dθ

=
� 0

−π/4

(
−4r sin θ − r2

2

)
|−4 sin θ
r=0 dθ

=
� 0

−π/4

(
16 sin2 θ − 8 sin2 θ

)
dθ

= 6
� 0

−π/4
8
(

1− cos 2θ
2

)
dθ

= π − 2.
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Wednesday, 11/04/09

We ended the period with this example: Find the center of mass of a wire whose position
vector is given by

r (t) =
〈√

2t,
√

2t, 4− t2
〉
, 0 ≤ t ≤ 1,

and whose density function as a function of t is δ (t) = 3t.
This amounts to the parametric representation

x (t) =
√

2t

y (t) =
√

2t 0 ≤ t ≤ 1,

z (t) = 4− t2

so that

ds =
√
x′ (t)2 + y′ (t)2 + z′ (t)2dt

=

√(√
2
)2

+
(√

2
)2

+ (−2t)2dt

= 2
√

1 + t2dt.

Hence

M =
�
C
δ ds

=
� 1

0
3t · 2

√
1 + t2dt

=
� 2

1
3u1/2 du

= 3
u3/2

3/2
|2u=1

2
(
2
√

2− 1
)
,

where the u-integral results from the substitution u = 1 + t2.
Similarly, with the same substitution and observation that t =

√
u− 1 on the interval of

integration, we have

Myz =
�
C
xδ ds

=
� 1

0

√
2t · 3t · 2

√
1 + t2dt

= 6
√

2
� 1

0
t2
√

1 + t2 dt

6
√

2
� π/4

0
sec3 θ dθ

3
4

√
2
{

3
√

2 + ln
(√

2− 1
)}
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The third integral requires a trig substitution. Draw a right triangle with legs 1 and t. See page
461 of your text for a review. Finally, the fourth integral requires a trigonometric integration
technique that you can see on page 459 of your text.

The integral for Mxz is the same as the integral for Myz, so has the same answer. The
integral

Mxy =
�
C
zδ ds

=
� 1

0

(
4− t2

)
3t
√

1 + t2dt

=
3
2

� 1

0
(u− 5)u1/2 du

=
1
5

(
38
√

2− 22
)
.

is actually easier than the preceding integral, and can be worked out with the same substitution
as in the mass integral.

Monday, November 16

We ended the period with an application of Green's theorem to area calculation: The
problem is to compute the area of the astroid given parametrically by r (t) =

〈
a cos3 t, a sin3 t

〉
,

0 ≤ t ≤ 2π. We used the vector �eld

F =
1
2
〈−y, x〉 = 〈M,N〉

and the �ow (circulation) form of Green's theorem to obtain the area is

�
R

1 dA =
�
R

(
1
2

+
1
2

)
=
�
R

(Nx −My) dA] =
�
C

1
2

(−y dx+ x dy) .
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This integral is, by the parametrization x = a cos3 t, dx = −3a cos2 t sin t dt, y = a sin3 t,
dy = 3a sin2 t cos t dt, so that�

C

1
2

(y dx− x dy) =
1
2

� 2π

0

(
−a sin3 t

(
−3a cos2 t sin t

)
+ a cos3 t 3a sin2 t cos t

)
dt

=
3a2

2

� 2π

0

(
sin4 t cos2 t+ cos4 t sin2 t

)
dt

=
3a2

2

� 2π

0
sin2 t cos2 t

(
sin2 t+ cos2 t

)
dt

=
3a2

2

� 2π

0
(sin t cos t)2 dt

=
3a2

2

� 2π

0

(
sin 2t

2

)2

dt

=
3a2

2

� 2π

0

1
4

(
1− cos 4t

2

)
dt

=
3a2

8

(
1
2
t− sin 4t

8

)
|2π0

=
3
8
πa2.
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1. What You Need to Know for Chapter 14 Integrations

Vector Operators: The �del� operator gives us a handy way to remember some basic oper-

ations by pretending that∇ =
〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
(or its two-dimensional version∇ =

〈
∂

∂x
,
∂

∂y

〉
)

is a vector, so for scalar function f (x, y, z) and vector �eld F (x, y, z) = 〈M,N,P 〉 we have

grad (f) = ∇f =
〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
div (F) = ∇ · F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· 〈M,N,P 〉 =

∂M

∂x
+
∂N

∂y
+
∂P

∂z

curl (F) = ∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

M N P

∣∣∣∣∣∣ =
〈
∂P

∂y
− ∂N

∂z
,−
(
∂P

∂x
− ∂M

∂z

)
,
∂N

∂x
− ∂M

∂y

〉
.

Di�erential Lengths: Given a curve C parametrized by r (t) = 〈x (t) , y (t) , z (t)〉 a ≤
t ≤ b, the important di�erentials along the curve are dx, dy, dz, and ds (arc length), and
important vectors are dr, T (t) (unit tangent vector) and n (t) (unit normal vector), all of
which are related by (last equation is for two-dimensional r (t) = 〈x (t) , y (t)〉)

dx = x′ (t) dt,dy = y′ (t) dt, dz = z′ (t) dt

dr = 〈dx, dy, dz〉 = Tds

ds = |dr| =
√
dx2 + dy2 + dz2

nds = ±〈dy,−dx〉 .

An outward normal for a simple closed curve in the xy-plane traversed positively (counter-
clockwise) with respect to its interior would select the �+” sign in the formula for nds.

Use these di�erential formulas to turn line integrals into single integrals with the formulas�
C

F · dr =
�
C
M dx+N dy + P dz

�
C
g (x, y, z) dw =

� b

a
g (x (t) , y (t) , z (t))w′ (t) dt.

Di�erential Areas: Given an orientable surface S with unit normal n and parametrized
by r (u, v) = 〈x (u, v) , y (u, v) , z (u, v)〉, where (u, v) ∈ R, a region in the uv-plane, and given
that dσ is di�erential surface area on S and dA is di�erential area in the uv-plane, then

ndσ = ±ru × rvdA

dσ = |ru × rv| dA

In the special case that S is the graph of z = f (x, y), (x, y) ∈ R, a region in the xy-plane,
then

ndσ = ±〈−fx,−fy, 1〉 dA
where a choice is made for the ± sign.

Use these di�erential formulas to turn a surface integral into a double integral with formulas�
S
g (x, y, z) dσ =

�
R
g (x (u, v) , y (u, v) , z (u, v)) |ru × rv| dA

�
S
F · ndσ =

�
R

F (x (u, v) , y (u, v) , z (u, v)) · (±ru × rv) dA.
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Key Theorems about Di�erential Operators:

Each of these theorems is an analogue to the FTOC (
� b
a f
′ (x) dx = f (b)−f (a)) for various

di�erential operators.
Stokes' Theorem: Let S be an orientable piecewise smooth surface with normal n and

simple closed curve C, positively oriented with respect to n, as its boundary, and let F be a
smooth vector �eld de�ned on S. Then�

C
F ·Tds =

�
S

(∇× F) · ndσ.

Note: �positively oriented� means that the direction of C is such that one can move in that
direction while keeping the �forest of normals n� on the left. If the surface is in the xy-plane
interior to its boundary C and the normal is k, then this simply amounts to orienting C
counterclockwise.

Using n = k in two dimensions, this specializes to:
Flow (tangential or circulation) form of Green's Theorem: Let C be a piecewise smooth

simple closed curve enclosing the plane region R and positively oriented with respect to R
with normal k and let F = 〈M,N〉 be a smooth vector �eld de�ned on and inside C. Then
the following two equivalent statements hold:�

C
F ·Tds =

�
R

(∇× F) · k dA,
�
C
M dx+N dy =

�
R

(Nx −My) dA.

Gauss's Divergence Theorem: Let S be a closed orientable piecewise smooth surface
enclosing the solid D with outward pointing normal n on S and let F be a smooth vector �eld
de�ned on and inside S. Then �

S
F · ndσ =

�
D
∇ · F dV.

In two dimensions, this specializes to:
Flux (normal) form of Green's Theorem: Let C be a piecewise smooth simple closed curve

enclosing the plane region R with outward pointing normal n on C and let F = 〈M,N〉 be
a smooth vector �eld de�ned on and inside C. Then the following two equivalent statements
hold: �

C
F · nds =

�
R
∇ · F dA,

�
C
M dy −N dx =

�
R

(Mx +Ny) dA.

Characterization of Conservative Vector Fields: Let D be a simply connected open
set in 2D or 3D, F = 〈M,N,P 〉 a smooth vector �eld de�ned on D (P = 0 in the 2D case),
and C an arbitrary curve contained in D. Then the following are equivalent:

(1) F is conservative, i.e., the line integral
�

F · dr is path independent.
(2) F is a gradient �eld with (scalar) potential function f , that is, F = ∇f , in which case

if the curve C starts at P and ends at Q, then�
C

F · dr = f (Q)− f (P ) .

(3)
�
C F · dr = 0 for any closed curve C.

(4) ∇× F = 0 in D.


