Math 208

Polar coordinate iterated integrals

- 1. Set up and evaluate a double integral in polar coordinates for $\iint_R x^2 y \, dA$, where *R* is the region inside $x^2 + y^2 = 4$ and above the line y = -x.
- 2. Set up and evaluate a double integral in polar coordinates for $\iint_R (x+y) dA$, where R is the portion of the region inside the circle $x^2 + y^2 = 2y 2x$ that is in the first quadrant. (Note the circle goes through the origin and has its center in quadrant II.)
- 3. Convert to polar coordinates: $\int_{-1}^{0} \int_{\sqrt{3}}^{\sqrt{4-x^2}} y(x^2+y^2) \, dy \, dx$. Do not evaluate.
- 4. Use a double integral in polar coordinates to find $\int_R \frac{1}{\sqrt{x^2+y^2}} dA$, where *R* is one loop of the "four leaf clover" $r = 6\cos(2\theta)$.
- 5. Use a double integral in polar coordinates to find $\int_R y \, dA$, where *R* is the region below the *x*-axis, inside the circle $x^2 + y^2 = 4x$, and outside the circle $x^2 + y^2 = 4$.
- 6. Find the area inside the cardioid $r = 2 + 2\sin\theta$ and outside of the circle r = 3.

Answers:

- 1. $\frac{16\sqrt{2}}{15}$
- 2. $\frac{2}{3}$
- 3. $\int_{\frac{\pi}{2}}^{\frac{2\pi}{3}} \int_{\frac{\sqrt{3}}{\sin\theta}}^{2} r^4 \sin\theta \, dr \, d\theta$
- 4. 6
- 5. $-\frac{11}{3}$
- 6. $\frac{9}{2}\sqrt{3}-\pi$