
Math 208
The differentials for flux integrals

Our text fails to explicitly state the formula for   when the surface is written as one variable is adσn
function of the other two.  This is by far the most common case used, and knowing  savesdσn
several steps, so it should be known.  Most often,  z  is a function of  x  and  y.  In that case we get:

If the surface is part of , then  .( , )z f x y= ( )x yd f f dy dxσ = ± + −n i j k

The choice of sign depends on the orientation of the surface involved, + giving downward orientation,
! giving upward (since up/down is determined by the k coefficient).  Also, be aware that the integral

can, of course, be done  as indicated, , or  even .  But treating  as ady dx dx dy r dr dθ dσn
combination and taking the dot product with the vector field  is almost always simpler than findingF

 and  separately, calculating , and then multiplying by .  For example:n dσ F ni dσ

Example:  Find the flux of  over that portion of the upward oriented( , , ) 3 ,3 , 2x y z x y z=< − >F

paraboloid  which satisfies . 
2 2 0x y z+ − = 9z ≤

Solution:  The surface equation, solved for  z, gives us  so we need
2 2z x y= +

.  Since we want upward oriented,
2 2( , )f x y x y= +

,which leads to( ) 2 , 2 ,1x yd f f dy dx x y dy dxσ = − + − = < − − >n i j k
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But  Rxy  is the region in the xy-plane where , which means this integral is best done
2 2 9z x y= + ≤

in polar coordinates.  We get:
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Note that one can “rotate” the roles of the variables, and get corresponding formulas:

 If the surface is part of , then  .( , )x f y z= ( )y zd f f dy dzσ = ± − + +n i j k
and likewise

If the surface is part of , then  .( , )y f x z= ( )x zd f f dx dzσ = ± − +n i j k

Also note that the formulas for  in these settings (which are in the text at the bottom of p. 895 anddσ
top of p. 896) are just the formulas for the lengths of these vector differentials.  In general, if you find
yourself having trouble memorizing all of the differentials for surface integrals, memorize the ones for

, and if you’re doing a surface integral which is not a flux integral, find  by taking thedσn dσ
length of the vector part.  The formula for  is generally simpler to memorize and use than thedσn
formulas for  and  done separately.  (When done separately, some extra square roots arise,n dσ
which eventually cancel.)  For  we mainly use the above cases and the parametric case, wheredσn
again the combined differential is simpler to use than  and  separately, but it is not givenn dσ
explicitly in the text:

If the surface is given parametrically by , then .( , )u vr ( )u vd du dvσ = ± ×n r r

The formulas given in the book for the level surface  are generally harder to use than( , , )g x y z c=
the formulas above, and the surfaces we give you are always either easy to parametrize or easy to solve
for one of the variables in terms of the other two, so if you know the above formulas and know how to
parametrize standard surfaces, you’re generally covered.

Exercises:

1. Find the flux of  over the upward oriented portion of
2( , , ) 2 ,0,4x y z z y= < >F

 that is defined by and .22 3z x y= + + 1 3x− ≤ ≤ 1 4y≤ ≤

2. Find the flux of  over the portion of the surface ( , , ) 3,1, 2x y z = < − >F 2 2y z x+ =
that has ,  and is oriented toward decreasing y.2x−2 ≤ ≤ 2 z− ≤ ≤ 4

3. Find the flux of  over the finite piece of  bounded by( , , ) 2 , ,x y z x y z= < >F 2 4x y z=
, , and , if the orientation is away from you as viewed from a point2z = − y z= − 2y z=

on the negative x-axis.



Answers:
1. !240
2. 72
3. !384


