JDEP 384H: Numerical Methods in Business

Instructor: Thomas Shores
Department of Mathematics

Lecture 11, February 13, 2007
110 Kaufmann Center
Outline

1. Basic Financial Assets and Related Issues

2. BT 1.4: Derivatives
 - The Basics
 - Black-Scholes
 - European Options
Basic Financial Assets and Related Issues
BT 1.4: Derivatives
The Basics
Black-Scholes
European Options
Basic Financial Assets and Related Issues

1. Basic Financial Assets and Related Issues

2. BT 1.4: Derivatives
 - The Basics
 - Black-Scholes
 - European Options
Outline

1 Basic Financial Assets and Related Issues

2 BT 1.4: Derivatives
 - The Basics
 - Black-Scholes
 - European Options
Onward to Black-Scholes

At this point, let’s take some time and cruise through the stochastic processes section of our ProbStatLectures (at least up to the Stochastic Integrals section.) Highlights:

Given Wiener process $X(t)$, smooth function $f(X, t)$:

- **(Ito) $df = \sigma S \frac{\partial f}{\partial S} dW + \left(\mu S \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + \frac{\partial f}{\partial t} \right) dt$.**
- Without randomness, the term $\frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2}$ would be absent.
- Integrals with respect to dW are given as stochastic process $Y(t)$, with $Y(t) - Y(0) = \int_0^t h(W(\tau), \tau) dW(\tau)$ and

$$Y(t) - Y(0) = \lim_{m \to \infty} \sum_{j=0}^{m} h(W(t_j), t_j) (W(t_{j+1}) - W(t_j)).$$
Onward to Black-Scholes

At this point, let’s take some time and cruise through the stochastic processes section of our ProbStatLectures (at least up to the Stochastic Integrals section.) Highlights:

Given Wiener process $X(t)$, smooth function $f(X, t)$:

- (Ito) $df = \sigma S \frac{\partial f}{\partial S} dW + \left(\mu S \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + \frac{\partial f}{\partial t} \right) dt$.

- Without randomness, the term $\frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2}$ would be absent.

- Integrals with respect to dW are given as stochastic process $Y(t)$, with $Y(t) - Y(0) = \int_0^t h(W(\tau), \tau) dW(\tau)$ and

$$Y(t) - Y(0) = \lim_{m \to \infty} \sum_{j=0}^{m} h(W(t_j), t_j)(W(t_{j+1}) - W(t_j)).$$
Onward to Black-Scholes

At this point, let’s take some time and cruise through the stochastic processes section of our ProbStatLectures (at least up to the Stochastic Integrals section.) Highlights:

Given Wiener process $X(t)$, smooth function $f(X, t)$:

- (Ito) $df = \sigma S \frac{\partial f}{\partial S} dW + \left(\mu S \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + \frac{\partial f}{\partial t} \right) dt$.

- Without randomness, the term $\frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2}$ would be absent.

- Integrals with respect to dW are given as stochastic process $Y(t)$, with $Y(t) - Y(0) = \int_0^t h(W(\tau), \tau) dW(\tau)$ and

$$Y(t) - Y(0) = \lim_{m \to \infty} \sum_{j=0}^{m} h(W(t_j), t_j) (W(t_{j+1}) - W(t_j)).$$
At this point, let’s take some time and cruise through the stochastic processes section of our ProbStatLectures (at least up to the Stochastic Integrals section.) Highlights:

Given Wiener process $X(t)$, smooth function $f(X, t)$:

- \[(\text{Itô}) \ df = \sigma S \frac{\partial f}{\partial S} dW + \left(\mu S \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + \frac{\partial f}{\partial t} \right) dt.\]

- Without randomness, the term $\frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2}$ would be absent.

- Integrals with respect to dW are given as stochastic process $Y(t)$, with $Y(t) - Y(0) = \int_0^t h(W(\tau), \tau) \, dW(\tau)$ and

$$Y(t) - Y(0) = \lim_{m \to \infty} \sum_{j=0}^{m} h(W(t_j), t_j) (W(t_{j+1}) - W(t_j)).$$
Onward to Black-Scholes

We can actually do some simple calculations with these ideas:

Calculate the following at the board:

\[\int_0^t dW(\tau) \]

\[\int_0^t W(\tau) dW(\tau) \quad \text{... well, we won’t work it out, but let’s see why the obvious answer (what is it?) is wrong by calculating expectations.} \]

\[\text{What is the least adjustment that gives a plausible answer?} \]
Onward to Black-Scholes

We can actually do some simple calculations with these ideas:

Calculate the following at the board:

- $\int_0^t dW(\tau)$
- $\int_0^t W(\tau) dW(\tau)$... well, we won’t work it out, but let’s see why the obvious answer (what is it?) is wrong by calculating expectations.
- What is the least adjustment that gives a plausible answer?
We can actually do some simple calculations with these ideas:

Calculate the following at the board:

\[\int_{0}^{t} dW(\tau) \]

\[\int_{0}^{t} W(\tau) dW(\tau) \] ... well, we won’t work it out, but let’s see why the obvious answer (what is it?) is wrong by calculating expectations.

What is the least adjustment that gives a plausible answer?
We can actually do some simple calculations with these ideas:

Calculate the following at the board:

1. \[\int_{0}^{t} dW(\tau) \]
2. \[\int_{0}^{t} W(\tau) \, dW(\tau) \] ... well, we won’t work it out, but let’s see why the obvious answer (what is it?) is wrong by calculating expectations.
3. What is the least adjustment that gives a plausible answer?
Risky asset price $S(t)$:

- Is a random variable for each time t.
- Is described as a random process $\frac{dS}{S} = \sigma \, dW + \mu \, dt$ where $\sigma \, dW$ is the risky part and $\mu \, dt$ is the risk-free part. Discuss volatility σ and drift μ.
- If $f(S, t)$ is the price of a call or put, Ito’s Lemma tells us that

$$df = \sigma S \frac{\partial f}{\partial S} \, dW + \left(\mu S \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + \frac{\partial f}{\partial t} \right) \, dt.$$
Onward to Black-Scholes

Risk asset price $S(t)$:

- Is a random variable for each time t.
- Is described as a random process $\frac{dS}{S} = \sigma dW + \mu dt$ where σdW is the risky part and μdt is the risk-free part. Discuss volatility σ and drift μ.
- If $f(S,t)$ is the price of a call or put, Ito’s Lemma tells us that

$$df = \sigma S \frac{\partial f}{\partial S} dW + \left(\mu S \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + \frac{\partial f}{\partial t} \right) dt.$$
Risky asset price $S(t)$:

- Is a random variable for each time t.
- Is described as a random process $\frac{dS}{S} = \sigma dW + \mu dt$ where σdW is the risky part and μdt is the risk-free part. Discuss volatility σ and drift μ.

- If $f(S,t)$ is the price of a call or put, Ito’s Lemma tells us that

$$df = \sigma S \frac{\partial f}{\partial S} dW + \left(\mu S \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + \frac{\partial f}{\partial t} \right) dt.$$
Risky asset price $S(t)$:

- Is a random variable for each time t.
- Is described as a random process $\frac{dS}{S} = \sigma \, dW + \mu \, dt$ where $\sigma \, dW$ is the risky part and $\mu \, dt$ is the risk-free part. Discuss volatility σ and drift μ.
- If $f(S,t)$ is the price of a call or put, Ito’s Lemma tells us that

$$df = \sigma S \frac{\partial f}{\partial S} \, dW + \left(\mu S \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + \frac{\partial f}{\partial t} \right) \, dt.$$
Here’s the scenario: Consider a portfolio consisting of one option at a price of $f(S,t)$ and Δ short shares of the corresponding stock at price S. So the value of the portfolio is

$$V = f(S,t) - \Delta \cdot S$$

Black-Scholes Derivation:

Analyze the differential of the price:

- $dV = df - \Delta \cdot dS$. So use Ito:

$$dV = \sigma S \frac{\partial f}{\partial S} dW + \left(\mu S \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + \frac{\partial f}{\partial t} \right) dt - \Delta \cdot dS.$$

- If the portfolio were risk-free, we would have $dV = Vr \ dt$
- And then a miracle happens!
Here’s the scenario: Consider a portfolio consisting of one option at a price of $f(S, t)$ and Δ short shares of the corresponding stock at price S. So the value of the portfolio is

$$V = f(S, t) - \Delta \cdot S$$

Black-Scholes Derivation:

Analyze the differential of the price:

- $dV = df - \Delta \cdot dS$. So use Ito:

$$dV = \sigma S \frac{\partial f}{\partial S} dW + \left(\mu S \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + \frac{\partial f}{\partial t} \right) dt - \Delta \cdot dS.$$

- If the portfolio were risk-free, we would have $dV = Vr \, dt$
- And then a miracle happens!
Here’s the scenario: Consider a portfolio consisting of one option at a price of $f(S, t)$ and Δ short shares of the corresponding stock at price S. So the value of the portfolio is

$$V = f(S, t) - \Delta \cdot S$$

Black-Scholes Derivation:

Analyze the differential of the price:

- $dV = df - \Delta \cdot dS$. So use Ito:
-
 $$dV = \sigma S \frac{\partial f}{\partial S} dW + \left(\mu S \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + \frac{\partial f}{\partial t} \right) dt - \Delta \cdot dS.$$

- If the portfolio were risk-free, we would have $dV = Vr \, dt$
- And then a miracle happens!
Here’s the scenario: Consider a portfolio consisting of one option at a price of $f(S,t)$ and Δ short shares of the corresponding stock at price S. So the value of the portfolio is

$$V = f(S,t) - \Delta \cdot S$$

Black-Scholes Derivation:

Analyze the differential of the price:

- $dV = df - \Delta \cdot dS$. So use Ito:
 $$dV = \sigma S \frac{\partial f}{\partial S} dW + \left(\mu S \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + \frac{\partial f}{\partial t} \right) dt - \Delta \cdot dS.$$

- If the portfolio were risk-free, we would have $dV = Vr \ dt$

- And then a miracle happens!
Here’s the scenario: Consider a portfolio consisting of one option at a price of $f(S,t)$ and Δ short shares of the corresponding stock at price S. So the value of the portfolio is

$$V = f(S,t) - \Delta \cdot S$$

Black-Scholes Derivation:

Analyze the differential of the price:

- $dV = df - \Delta \cdot dS$. So use Ito:

 $$dV = \sigma S \frac{\partial f}{\partial S} dW + \left(\mu S \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + \frac{\partial f}{\partial t} \right) dt - \Delta \cdot dS.$$

- If the portfolio were risk-free, we would have $dV = Vr \, dt$

- And then a miracle happens!
Recall that \(dS = S\sigma dW + \mu Sdt \), so plug in, choose \(\Delta = \frac{\partial f}{\partial S} \), equate to the risk-free differential, and obtain the celebrated Black-Scholes equation, which first appeared in a 1973 paper in the Journal of Political Economy by Fischer Black and Myron Scholes titled “The pricing of options and corporate liabilities”.

\[
\frac{\partial f}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + rS \frac{\partial f}{\partial S} - rf = 0.
\]

Discussion:

Notice that randomness \(dX \) is gone! So is drift \(\mu \)! There are other aspects to this problem. Consider, e.g., a call.

- Final conditions: \(f(S, T) = \max(S - X, 0) \)
- Boundary conditions: \(f(0, T) = 0, \lim_{S \to \infty} f(S, T) = S - X \)
- There is a unique solution to this problem and we have formulas for it in the case of European options!
- There are important quantities associated with the formula, called the “Greeks”.

There is a unique solution to this problem and we have formulas for it in the case of European options!
Recall that \(dS = S\sigma dW + \mu S dt \), so plug in, choose \(\Delta = \frac{\partial f}{\partial S} \), equate to the risk-free differential, and obtain the celebrated Black-Scholes equation, which first appeared in a 1973 paper in the Journal of Political Economy by Fischer Black and Myron Scholes titled “The pricing of options and corporate liabilities”.

\[
\frac{\partial f}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + rS \frac{\partial f}{\partial S} - rf = 0.
\]

Discussion:
Notice that randomness \(dX \) is gone! So is drift \(\mu \)! There are other aspects to this problem. Consider, e.g., a call.

- Final conditions: \(f(S, T) = \max(S - X, 0) \)
- Boundary conditions: \(f(0, T) = 0, \lim_{S \to \infty} f(S, T) = S - X \)
- There is a unique solution to this problem and we have formulas for it in the case of European options!
- There are important quantities associated with the formula, called the “Greeks”.
Recall that \(dS = S\sigma dW + \mu S dt \), so plug in, choose \(\Delta = \frac{\partial f}{\partial S} \), equate to the risk-free differential, and obtain the celebrated Black-Scholes equation, which first appeared in a 1973 paper in the Journal of Political Economy by Fischer Black and Myron Scholes titled “The pricing of options and corporate liabilities”.

\[
\frac{\partial f}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + rS \frac{\partial f}{\partial S} - rf = 0.
\]

Discussion:

Notice that randomness \(dX \) is gone! So is drift \(\mu \)! There are other aspects to this problem. Consider, e.g., a call.

- **Final conditions:** \(f (S, T) = \max (S - X, 0) \)
- **Boundary conditions:** \(f (0, T) = 0, \lim_{S \to \infty} f (S, T) = S - X \)

There is a unique solution to this problem and we have formulas for it in the case of European options!

- There are important quantities associated with the formula, called the “Greeks”.
Recall that \(dS = S\sigma dW + \mu Sdt \), so plug in, choose \(\Delta = \frac{\partial f}{\partial S} \), equate to the risk-free differential, and obtain the celebrated Black-Scholes equation, which first appeared in a 1973 paper in the Journal of Political Economy by Fischer Black and Myron Scholes titled “The pricing of options and corporate liabilities”.

\[
\frac{\partial f}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + rS \frac{\partial f}{\partial S} - rf = 0.
\]

Discussion:

Notice that randomness \(dX \) is gone! So is drift \(\mu \)!

There are other aspects to this problem. Consider, e.g., a call.

- **Final conditions:** \(f(S, T) = \max(S - X, 0) \)
- **Boundary conditions:** \(f(0, T) = 0, \lim_{S \to \infty} f(S, T) = S - X \)

There is a unique solution to this problem and we have formulas for it in the case of European options!

- There are important quantities associated with the formula, called the “Greeks”.

The Equation
Recall that $dS = S\sigma dW + \mu S dt$, so plug in, choose $\Delta = \partial f / \partial S$, equate to the risk-free differential, and obtain the celebrated Black-Scholes equation, which first appeared in a 1973 paper in the Journal of Political Economy by Fischer Black and Myron Scholes titled “The pricing of options and corporate liabilities”.

$$\frac{\partial f}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + rS \frac{\partial f}{\partial S} - rf = 0.$$

Discussion:

Notice that randomness dX is gone! So is drift μ! There are other aspects to this problem. Consider, e.g., a call.

- **Final conditions:** $f (S, T) = \max (S - X, 0)$
- **Boundary conditions:** $f (0, T) = 0$, $\lim_{S \to \infty} f (S, T) = S - X$
- **There is a unique solution to this problem and we have formulas for it in the case of European options!**
- **There are important quantities associated with the formula, called the “Greeks”**.
Outline

1. Basic Financial Assets and Related Issues

2. BT 1.4: Derivatives
 - The Basics
 - Black-Scholes
 - European Options
Solution to Black-Scholes

For a European call:

- \(C(S, t) = SN(d_1) - Ke^{-r(T-t)}N(d_2) \)

 where

\[
N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-s^2/2} \, ds
\]

\[
d_1 = \ln \left(\frac{S}{K} \right) + \left(r + \sigma^2/2 \right) (T - t) / \sigma \sqrt{T - t}
\]

\[
d_2 = d_1 - \sigma \sqrt{T - t}
\]

- Using call-put parity, on obtains

\[P(S, t) = Ke^{-r(T-t)}N(-d_2) - SN(-d_1).\]
Solution to Black-Scholes

For a European call:

- \(C(S, t) = SN(d_1) - Ke^{-r(T-t)}N(d_2) \)

where

\[
N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-s^2/2} \, ds
\]

\[
d_1 = \ln\left(\frac{S}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)(T-t) + \frac{\sigma \sqrt{T-t}}{
}\]

\[
d_2 = d_1 - \sigma \sqrt{T-t}
\]

- Using call-put parity, on obtains

\[
P(S, t) = Ke^{-r(T-t)}N(-d_2) - SN(-d_1).
\]
For a European call:

- \(C(S, t) = SN(d_1) - Ke^{-r(T-t)}N(d_2) \)
- where

\[
N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-s^2/2} ds
\]

\[
d_1 = \frac{\ln(S/K) + (r + \sigma^2/2) (T-t)}{\sigma \sqrt{T-t}}
\]

\[
d_2 = d_1 - \sigma \sqrt{T-t}
\]

- Using call-put parity, we obtain

\[
P(S, t) = Ke^{-r(T-t)}N(-d_2) - SN(-d_1).
\]
Solution to Black-Scholes

For a European call:

- \(C(S, t) = SN(d_1) - Ke^{-r(T-t)}N(d_2) \)
- where

\[
N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-s^2/2} \, ds
\]

\[
d_1 = \ln \left(\frac{S}{K} \right) + (r + \sigma^2/2)(T - t) \frac{\sigma \sqrt{T - t}}{\sigma \sqrt{T - t}}
\]

\[
d_2 = d_1 - \sigma \sqrt{T - t}
\]

- Using call-put parity, on obtains

\[
P(S, t) = Ke^{-r(T-t)}N(-d_2) - SN(-d_1).
\]
The Greeks

Tools for Financial Analysis:

- \(\Delta = \frac{\partial f(S, t)}{\partial S} \): “delta” measures sensitivity of portfolio to small variations in the stock price (analogous to duration in bonds.)

- \(\Theta = \frac{\partial f(S, t)}{\partial t} \): “theta” measures sensitivity of portfolio to small variations in time (useful as expiry nears.)

- \(\Gamma = \frac{\partial^2 f(S, t)}{\partial S^2} \): “gamma” measures sensitivity of portfolio to smaller effects (analogous to convexity in bonds.)

- \(\nu = \frac{\partial f(S, t)}{\partial \sigma} \): the “vega” measures sensitivity to volatility.

- \(\rho = \frac{\partial f(S, t)}{\partial r} \): the “rho” measures sensitivity to change in interest rate.
The Greeks

Tools for Financial Analysis:

- **Δ = \(\frac{\partial f(S, t)}{\partial S} \):** “delta” measures sensitivity of portfolio to small variations in the stock price (analogous to duration in bonds.)

- **Θ = \(\frac{\partial f(S, t)}{\partial t} \):** “theta” measures sensitivity of portfolio to small variations in time (useful as expiry nears.)

- **Γ = \(\frac{\partial^2 f(S, t)}{\partial S^2} \):** “gamma” measures sensitivity of portfolio to smaller effects (analogous to convexity in bonds.)

- **ν = \(\frac{\partial f(S, t)}{\partial \sigma} \):** the “vega” measures sensitivity to volatility.

- **ρ = \(\frac{\partial f(S, t)}{\partial r} \):** the “rho” measures sensitivity to change in interest rate.
Tools for Financial Analysis:

- \(\Delta = \frac{\partial f(S, t)}{\partial S} \): "delta" measures sensitivity of portfolio to small variations in the stock price (analogous to duration in bonds.)
- \(\Theta = \frac{\partial f(S, t)}{\partial t} \): "theta" measures sensitivity of portfolio to small variations in time (useful as expiry nears.)
- \(\Gamma = \frac{\partial^2 f(S, t)}{\partial S^2} \): "gamma" measures sensitivity of portfolio to smaller effects (analogous to convexity in bonds.)
- \(\nu = \frac{\partial f(S, t)}{\partial \sigma} \): the "vega" measures sensitivity to volatility.
- \(\rho = \frac{\partial f(S, t)}{\partial r} \): the "rho" measures sensitivity to change in interest rate.
The Greeks

Tools for Financial Analysis:

- $\Delta = \frac{\partial f(S, t)}{\partial S}$: “delta” measures sensitivity of portfolio to small variations in the stock price (analogous to duration in bonds.)

- $\Theta = \frac{\partial f(S, t)}{\partial t}$: “theta” measures sensitivity of portfolio to small variations in time (useful as expiry nears.)

- $\Gamma = \frac{\partial^2 f(S, t)}{\partial S^2}$: “gamma” measures sensitivity of portfolio to smaller effects (analogous to convexity in bonds.)

- $\nu = \frac{\partial f(S, t)}{\partial \sigma}$: the “vega” measures sensitivity to volatility.

- $\rho = \frac{\partial f(S, t)}{\partial r}$: the “rho” measures sensitivity to change in interest rate.
The Greeks

Tools for Financial Analysis:

- \(\Delta = \frac{\partial f(S, t)}{\partial S} \): “delta” measures sensitivity of portfolio to small variations in the stock price (analogous to duration in bonds.)
- \(\Theta = \frac{\partial f(S, t)}{\partial t} \): “theta” measures sensitivity of portfolio to small variations in time (useful as expiry nears.)
- \(\Gamma = \frac{\partial^2 f(S, t)}{\partial S^2} \): “gamma” measures sensitivity of portfolio to smaller effects (analogous to convexity in bonds.)
- \(\nu = \frac{\partial f(S, t)}{\partial \sigma} \): the “vega” measures sensitivity to volatility.
- \(\rho = \frac{\partial f(S, t)}{\partial r} \): the “rho” measures sensitivity to change in interest rate.
The Greeks

Tools for Financial Analysis:

- $\Delta = \frac{\partial f(S, t)}{\partial S}$: “delta” measures sensitivity of portfolio to small variations in the stock price (analogous to duration in bonds.)

- $\Theta = \frac{\partial f(S, t)}{\partial t}$: “theta” measures sensitivity of portfolio to small variations in time (useful as expiry nears.)

- $\Gamma = \frac{\partial^2 f(S, t)}{\partial S^2}$: “gamma” measures sensitivity of portfolio to smaller effects (analogous to convexity in bonds.)

- $\nu = \frac{\partial f(S, t)}{\partial \sigma}$: the “vega” measures sensitivity to volatility.

- $\rho = \frac{\partial f(S, t)}{\partial r}$: the “rho” measures sensitivity to change in interest rate.
Simulating a Random Walk:

This is easy with Matlab. For example, the random walk

\[dS = \sigma S dX + \mu S dt \]

\(\mu = 0.07 \) and \(\sigma = 0.03 \), \(S(0) = 100 \). Do the following Matlab commands.

```matlab
>mu = 0.06
>sigma = 0.03
>s = zeros(53,1);
>s(1)=100;
>dt = 1/52;
>dx = sqrt(dt)*randn(52,1);
>for ii=1:52,s(ii+1) = s(ii)+s(ii)*(sigma*dx(ii)+mu*dt);end
>plot(s), hold on, grid % now repeat experiment
```