JDEP 384H: Numerical Methods in Business

Instructor: Thomas Shores Department of Mathematics

Lecture 11, February 13, 2007 110 Kaufmann Center

Outline

- Basic Financial Assets and Related Issues
 - Mean-Variance Portfolio Optimization
 - Value-at-Risk

Outline

- Basic Financial Assets and Related Issues
 - Mean-Variance Portfolio Optimization
 - Value-at-Risk

- The absolute x_i above are replaced by fractions w_i , where $w_1 + w_2 = 1$ and we denote the vector $[w_1; w_2]$ by **w**.
- Assume no short positions, so the $w_i \geq 0$.
- Rates of return on investments are r_1 , r_2 , respectively, so rate of return of portfolio is $r = w_1 r_1 + w_2 r_2$.
- The expected returns are \bar{r}_1 , \bar{r}_2 and $\bar{r}=w_1\bar{r}_1+w_2\bar{r}_2$.
- The r.v.'s r_1 , r_2 have covariance matrix Σ , so that the variance of our portfolio is

$$Var(w_1r_1 + w_2r_2) = \mathbf{w}^T \mathbf{\Sigma} \mathbf{w}.$$

- The absolute x_i above are replaced by fractions w_i , where $w_1 + w_2 = 1$ and we denote the vector $[w_1; w_2]$ by **w**.
- Assume no short positions, so the $w_i \geq 0$.
- Rates of return on investments are r_1 , r_2 , respectively, so rate of return of portfolio is $r = w_1 r_1 + w_2 r_2$.
- The expected returns are \bar{r}_1 , \bar{r}_2 and $\bar{r}=w_1\bar{r}_1+w_2\bar{r}_2$.
- The r.v.'s r_1 , r_2 have covariance matrix Σ , so that the variance of our portfolio is

$$Var\left(w_1r_1+w_2r_2\right)=\mathbf{w}^T\mathbf{\Sigma}\mathbf{w}.$$

- The absolute x_i above are replaced by fractions w_i , where $w_1 + w_2 = 1$ and we denote the vector $[w_1; w_2]$ by \mathbf{w} .
- Assume no short positions, so the $w_i \geq 0$.
- Rates of return on investments are r_1 , r_2 , respectively, so rate of return of portfolio is $r = w_1 r_1 + w_2 r_2$.
- The expected returns are \bar{r}_1 , \bar{r}_2 and $\bar{r}=w_1\bar{r}_1+w_2\bar{r}_2$.
- The r.v.'s r_1 , r_2 have covariance matrix Σ , so that the variance of our portfolio is

$$Var(w_1r_1 + w_2r_2) = \mathbf{w}^T \mathbf{\Sigma} \mathbf{w}.$$

- The absolute x_i above are replaced by fractions w_i , where $w_1 + w_2 = 1$ and we denote the vector $[w_1; w_2]$ by \mathbf{w} .
- Assume no short positions, so the $w_i \geq 0$.
- Rates of return on investments are r_1 , r_2 , respectively, so rate of return of portfolio is $r = w_1 r_1 + w_2 r_2$.
- The expected returns are \bar{r}_1 , \bar{r}_2 and $\bar{r}=w_1\bar{r}_1+w_2\bar{r}_2$.
- The r.v.'s r_1 , r_2 have covariance matrix Σ , so that the variance of our portfolio is

$$Var(w_1r_1 + w_2r_2) = \mathbf{w}^T \mathbf{\Sigma} \mathbf{w}.$$

- The absolute x_i above are replaced by fractions w_i , where $w_1 + w_2 = 1$ and we denote the vector $[w_1; w_2]$ by **w**.
- Assume no short positions, so the $w_i \geq 0$.
- Rates of return on investments are r_1 , r_2 , respectively, so rate of return of portfolio is $r = w_1 r_1 + w_2 r_2$.
- The expected returns are \bar{r}_1 , \bar{r}_2 and $\bar{r}=w_1\bar{r}_1+w_2\bar{r}_2$.
- The r.v.'s r_1 , r_2 have covariance matrix Σ , so that the variance of our portfolio is

$$\operatorname{Var}(w_1r_1+w_2r_2)=\mathbf{w}^T\Sigma\mathbf{w}.$$

Problems:

- For a given expected return \bar{r}_T , what weighting gives the minimum variance?
- Answer: the solution to the quadratic programming problem:

$$\min \mathbf{w}^T \Sigma \mathbf{w}$$

subject to

$$\mathbf{w}^T \mathbf{\bar{r}} = \mathbf{\bar{r}}_T$$

 $\mathbf{w}^T \mathbf{1} = \mathbf{1}$

Problems:

- For a given expected return \bar{r}_T , what weighting gives the minimum variance?
- Answer: the solution to the quadratic programming problem:

$$\min \mathbf{w}^T \Sigma \mathbf{w}$$

subject to

$$\mathbf{w}^T \mathbf{\bar{r}} = \bar{r}_T$$

 $\mathbf{w}^T \mathbf{1} = \mathbf{1}$

Problems:

- For a given expected return \bar{r}_T , what weighting gives the minimum variance?
- Answer: the solution to the quadratic programming problem:

$$\min \mathbf{w}^T \mathbf{\Sigma} \mathbf{w}$$

subject to

$$\mathbf{w}^T \mathbf{\bar{r}} = \bar{r}_T$$

 $\mathbf{w}^T \mathbf{1} = \mathbf{1}$

Problems:

- For a given expected return \bar{r}_T , what weighting gives the minimum variance?
- Answer: the solution to the quadratic programming problem:

$$\min \mathbf{w}^T \mathbf{\Sigma} \mathbf{w}$$

subject to

$$\mathbf{w}^T \mathbf{\bar{r}} = \bar{r}_T$$

 $\mathbf{w}^T \mathbf{1} = 1$

Definition

A portfolio is **efficient** if it is not possible to obtain a higher expected return without increasing the risk.

Definition

An efficient frontier is a graph of efficient portfolio's risk versus expected return.

Example

From text, p. 74, suppose two assets have expected earning rates $\bar{r}_1=0.2$, $\bar{r}_2=0.1$, $\sigma_1^2=0.2$, $\sigma_2^2=0.4$ and $\sigma_{12}=-0.1$. Design an efficient frontier for this problem using Matlab. How would we find the leftmost point on the graph?

Definition

A portfolio is **efficient** if it is not possible to obtain a higher expected return without increasing the risk.

Definition

An efficient frontier is a graph of efficient portfolio's risk versus expected return.

Example

From text, p. 74, suppose two assets have expected earning rates $\bar{r}_1 = 0.2$, $\bar{r}_2 = 0.1$, $\sigma_1^2 = 0.2$, $\sigma_2^2 = 0.4$ and $\sigma_{12} = -0.1$. Design an efficient frontier for this problem using Matlab. How would we find the leftmost point on the graph?

Definition

A portfolio is **efficient** if it is not possible to obtain a higher expected return without increasing the risk.

Definition

An efficient frontier is a graph of efficient portfolio's risk versus expected return.

Example

From text, p. 74, suppose two assets have expected earning rates $\bar{r}_1=0.2$, $\bar{r}_2=0.1$, $\sigma_1^2=0.2$, $\sigma_2^2=0.4$ and $\sigma_{12}=-0.1$. Design an efficient frontier for this problem using Matlab. How would we find the leftmost point on the graph?

To solve this problem:

- Write out the system to be solved in detail.
- Notice anything about the weight constraints?

```
    So use Matlab as follows:

  >risks2 = wts'*covar*wts
```

So where is the efficient frontier? (Try using min on risks)

To solve this problem:

- Write out the system to be solved in detail.
- Notice anything about the weight constraints?

```
    So use Matlab as follows:

  >risks2 = wts'*covar*wts
```

So where is the efficient frontier? (Try using min on risks)

Example Analysis

To solve this problem:

- Write out the system to be solved in detail.
- Notice anything about the weight constraints?
- So use Matlab as follows: >ereturn = (0.1:.01:0.2)>rhs = [ones(size(ereturn));ereturn] >coef = [1 1 ; 0.2 0.1] >wts = coef\rhs >covar = [0.2 - 0.1; -0.1 0.4]>risks2 = wts'*covar*wts >risks2 = diag(risks2) >risks = sqrt(risks2) >plot(risks,ereturn),grid >xlabel('Risk (Standard Deviation)')

>ylabel('Expected Return')

So where is the efficient frontier? (Try using min on risks)

Example Analysis

Finding Boundary of Efficient Frontier:

The left-most point on the efficient frontier corresponds to solution of the quadratic programming program

$$\min \mathbf{w}^T \mathbf{\Sigma} \mathbf{w}$$

subject to $\mathbf{w}^T \mathbf{1} = 1$ and $\mathbf{w} \ge 0$. In our example, this problem can be reduced to one variable and solved by hand (substitute $1 - w_1$ for w_2 .) This is the **minimum risk portfolio**.

Now we know how to optimize a portfolio at a given return level. But this can't answer the question: what risk level is acceptable? We need to return to the utility function.

Example

Discuss the kind of problem that has to be solved if the investor's utility function is modeled by

$$u = \bar{r} - 0.005 \cdot A \cdot \sigma^2$$

where A is linked to the investor's risk aversion, say with a typical range of 2 to 4, in the two asset case considered above. Test for the optimal portfolio assuming that it occurs along the efficient frontier.

Start with the observation that if we use a weighted blend of the stocks then

$$u(\mathbf{w}) = [0.2, 0.1] \mathbf{w} - 0.005 \cdot A \cdot \mathbf{w}^T \Sigma \mathbf{w}$$

- Find the expected returns for each weight, A = 3,60:
 >u = [0.2 0.1]*wts 0.005*3*risks'
 >plot(wts(1,:),u)
- How would we handle this problem if we allowed short positions? Is there even a solution?
- Are there limits on short positions? How would we formulate this in a quadratic programming context?

Start with the observation that if we use a weighted blend of the stocks then

$$u(\mathbf{w}) = [0.2, 0.1] \mathbf{w} - 0.005 \cdot A \cdot \mathbf{w}^T \Sigma \mathbf{w}$$

- Find the expected returns for each weight, A = 3,60:
 >u = [0.2 0.1]*wts 0.005*3*risks'
 >plot(wts(1,:),u)
- How would we handle this problem if we allowed short positions? Is there even a solution?
- Are there limits on short positions? How would we formulate this in a quadratic programming context?

Start with the observation that if we use a weighted blend of the stocks then

$$u(\mathbf{w}) = [0.2, 0.1] \mathbf{w} - 0.005 \cdot A \cdot \mathbf{w}^T \Sigma \mathbf{w}$$

- Find the expected returns for each weight, A = 3,60:
 >u = [0.2 0.1]*wts 0.005*3*risks'
 >plot(wts(1,:),u)
- How would we handle this problem if we allowed short positions? Is there even a solution?
- Are there limits on short positions? How would we formulate this in a quadratic programming context?

Outline

- Basic Financial Assets and Related Issues
 - Mean-Variance Portfolio Optimization
 - Value-at-Risk

Our last topic in this section is a brief look at measuring **short term** riskiness of a portfolio of stocks. The measure is a number called the **value-at-risk** (VaR) of the portfolio.

How much could we lose? We suppose that:

- Our portfolio's current value is W_0 and the future (random) wealth is $W = W_0 (1 + R)$ in a (short) time interval δt .
- So our change in wealth over this time is

$$\delta W = W - W_0 = W_0 R$$

• We ask: with a confidence level of $1-\alpha$ what is the worse that could happen, i.e., the (positive) number VaR such that

$$P\left[\delta W \le -VaR\right] = 1 - \alpha.$$

Our last topic in this section is a brief look at measuring **short term** riskiness of a portfolio of stocks. The measure is a number called the **value-at-risk** (VaR) of the portfolio.

How much could we lose? We suppose that:

- Our portfolio's current value is W_0 and the future (random) wealth is $W = W_0 (1 + R)$ in a (short) time interval δt .
- So our change in wealth over this time is

$$\delta W = W - W_0 = W_0 R$$

• We ask: with a confidence level of $1-\alpha$ what is the worse that could happen, i.e., the (positive) number VaR such that

$$P\left[\delta W \le -VaR\right] = 1 - \alpha.$$

Our last topic in this section is a brief look at measuring **short term** riskiness of a portfolio of stocks. The measure is a number called the **value-at-risk** (VaR) of the portfolio.

How much could we lose? We suppose that:

- Our portfolio's current value is W_0 and the future (random) wealth is $W = W_0 (1 + R)$ in a (short) time interval δt .
- So our change in wealth over this time is

$$\delta W = W - W_0 = W_0 R$$

• We ask: with a confidence level of $1-\alpha$ what is the worse that could happen, i.e., the (positive) number VaR such that

$$P\left[\delta W \le -VaR\right] = 1 - \alpha.$$

Our last topic in this section is a brief look at measuring **short term** riskiness of a portfolio of stocks. The measure is a number called the **value-at-risk** (VaR) of the portfolio.

How much could we lose? We suppose that:

- Our portfolio's current value is W_0 and the future (random) wealth is $W = W_0 (1 + R)$ in a (short) time interval δt .
- So our change in wealth over this time is

$$\delta W = W - W_0 = W_0 R$$

• We ask: with a confidence level of $1 - \alpha$ what is the worse that could happen, i.e., the (positive) number VaR such that

$$P[\delta W \leq -VaR] = 1 - \alpha.$$

How much could we lose?

- Last probability is same as $P\left[R \leq -\frac{VaR}{W_0}\right] = 1 \alpha$.
- Now assume random rate of return R has a known distribution with c.d.f. F(r), so that

$$P\left[R \le -\frac{VaR}{W_0}\right] = F\left(\frac{VaR}{W_0}\right).$$

• We say that at a confidence level α (e.g., $\alpha=0.95$), We look for the number VaR such that

$$F(r_{1-\alpha}) = F\left(-\frac{VaR}{W_0}\right) = 1 - \alpha$$

and solve for VaR.

How much could we lose?

- Last probability is same as $P\left[R \leq -\frac{VaR}{W_0}\right] = 1 \alpha$.
- Now assume random rate of return R has a known distribution with c.d.f. F(r), so that

$$P\left[R \le -\frac{VaR}{W_0}\right] = F\left(\frac{VaR}{W_0}\right).$$

• We say that at a confidence level α (e.g., $\alpha=0.95$), We look for the number VaR such that

$$F(r_{1-\alpha}) = F\left(-\frac{VaR}{W_0}\right) = 1 - \alpha$$

and solve for VaR

How much could we lose?

- Last probability is same as $P\left[R \leq -\frac{VaR}{W_0}\right] = 1 \alpha$.
- Now assume random rate of return R has a known distribution with c.d.f. F(r), so that

$$P\left[R \le -\frac{VaR}{W_0}\right] = F\left(\frac{VaR}{W_0}\right).$$

• We say that at a confidence level α (e.g., $\alpha=0.95$), We look for the number VaR such that

$$F(r_{1-\alpha}) = F\left(-\frac{VaR}{W_0}\right) = 1 - \alpha$$

and solve for VaR

How much could we lose?

- Last probability is same as $P\left[R \le -\frac{VaR}{W_0}\right] = 1 \alpha$.
- Now assume random rate of return R has a known distribution with c.d.f. F(r), so that

$$P\left[R \le -\frac{VaR}{W_0}\right] = F\left(\frac{VaR}{W_0}\right).$$

• We say that at a confidence level α (e.g., $\alpha=0.95$), We look for the number VaR such that

$$F(r_{1-\alpha}) = F\left(-\frac{VaR}{W_0}\right) = 1 - \alpha$$

and solve for VaR.

Text example (p. 85):

- Calculate the volatility of the portfolio
- Use the norm_inv.m function to determine the VaR.
- What if the stocks were negatively correlated by $\rho = -.7$?
- We should factor in the drift μ , if the time line is very long. How? Add growth to VaR.
- VaR suffers some severe defects. For one, it is not subadditive, that is, we could have assets A and B such that VaR(A + B) > VaR(A) + VaR(B). This is odd indeed!

Text example (p. 85):

- Calculate the volatility of the portfolio.
- Use the norm_inv.m function to determine the VaR.
- What if the stocks were negatively correlated by $\rho = -.7$?
- We should factor in the drift μ , if the time line is very long. How? Add growth to VaR.
- VaR suffers some severe defects. For one, it is not subadditive, that is, we could have assets A and B such that VaR(A + B) > VaR(A) + VaR(B). This is odd indeed!

Text example (p. 85):

- Calculate the volatility of the portfolio.
- Use the norm_inv.m function to determine the VaR.
- What if the stocks were negatively correlated by $\rho = -.7$?
- We should factor in the drift μ , if the time line is very long. How? Add growth to VaR.
- VaR suffers some severe defects. For one, it is not subadditive, that is, we could have assets A and B such that VaR(A + B) > VaR(A) + VaR(B). This is odd indeed!

Text example (p. 85):

- Calculate the volatility of the portfolio.
- Use the norm_inv.m function to determine the VaR.
- ullet What if the stocks were negatively correlated by ho=-.7?
- We should factor in the drift μ , if the time line is very long. How? Add growth to VaR.
- VaR suffers some severe defects. For one, it is not subadditive, that is, we could have assets A and B such that VaR(A + B) > VaR(A) + VaR(B). This is odd indeed!

Text example (p. 85):

- Calculate the volatility of the portfolio.
- Use the norm_inv.m function to determine the VaR.
- What if the stocks were negatively correlated by $\rho = -.7?$
- We should factor in the drift μ , if the time line is very long. How? Add growth to VaR.
- VaR suffers some severe defects. For one, it is not subadditive, that is, we could have assets A and B such that VaR(A + B) > VaR(A) + VaR(B). This is odd indeed!

Text example (p. 85):

- Calculate the volatility of the portfolio.
- Use the norm_inv.m function to determine the VaR.
- What if the stocks were negatively correlated by $\rho = -.7?$
- We should factor in the drift μ , if the time line is very long. How? Add growth to VaR.
- VaR suffers some severe defects. For one, it is not subadditive, that is, we could have assets A and B such that VaR(A + B) > VaR(A) + VaR(B). This is odd indeed!