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Mean-Variance Portfolio Optimization

Following text, we'll stick to a portfolio of two risky assets for

purpose of illustration. Rather than use absolute quantities, we use

rates of return. For simplicity, examine a portfolio of two assets.

The absolute xi above are replaced by fractions wi , where

w1 + w2 = 1 and we denote the vector [w1;w2] by w.

Assume no short positions, so the wi ≥ 0.

Rates of return on investments are r1, r2, respectively, so rate

of return of portfolio is r = w1r1 + w2r2.

The expected returns are r̄1, r̄2 and r̄ = w1r̄1 + w2r̄2.

The r.v.'s r1, r2 have covariance matrix Σ, so that the variance

of our portfolio is

Var (w1r1 + w2r2) = wTΣw.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business
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Mean-Variance Portfolio Optimization

Problems:

For a given expected return r̄T , what weighting gives the

minimum variance?

Answer: the solution to the quadratic programming problem:

minwTΣw

subject to

wT r̄ = r̄T

wT1 = 1

What is the range of possible expected returns? Examine the

de�nition.
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Mean-Variance Portfolio Optimization

De�nition

A portfolio is e�cient if it is not possible to obtain a higher

expected return without increasing the risk.

De�nition

An e�cient frontier is a graph of e�cient portfolio's risk versus

expected return.

Example

From text, p. 74, suppose two assets have expected earning rates

r̄1 = 0.2, r̄2 = 0.1, σ2

1
= 0.2, σ2

2
= 0.4 and σ12 = −0.1. Design an

e�cient frontier for this problem using Matlab. How would we �nd

the leftmost point on the graph?
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Example Analysis

To solve this problem:

Write out the system to be solved in detail.

Notice anything about the weight constraints?

So use Matlab as follows:

>ereturn = (0.1:.01:0.2)

>rhs = [ones(size(ereturn));ereturn]

>coef = [1 1 ; 0.2 0.1]

>wts = coef\rhs

>covar = [0.2 -0.1; -0.1 0.4]

>risks2 = wts'*covar*wts

>risks2 = diag(risks2)

>risks = sqrt(risks2)

>plot(risks,ereturn),grid

>xlabel('Risk (Standard Deviation)')

>ylabel('Expected Return')

So where is the e�cient frontier? (Try using min on risks)
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Example Analysis

Finding Boundary of E�cient Frontier:

The left-most point on the e�cient frontier corresponds to solution

of the quadratic programming program

minwTΣw

subject to wT1 = 1 and w ≥ 0. In our example, this problem can

be reduced to one variable and solved by hand (substitute 1− w1

for w2.) This is the minimum risk portfolio.
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Putting It All Together

Now we know how to optimize a portfolio at a given return level.

But this can't answer the question: what risk level is acceptable?

We need to return to the utility function.

Example

Discuss the kind of problem that has to be solved if the investor's

utility function is modeled by

u = r̄ − 0.005 · A · σ2

where A is linked to the investor's risk aversion, say with a typical

range of 2 to 4, in the two asset case considered above. Test for the

optimal portfolio assuming that it occurs along the e�cient frontier.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



Putting It All Together

Start with the observation that if we use a weighted blend of the

stocks then

u (w) = [0.2, 0.1]w − 0.005 · A ·wTΣw

Find the expected returns for each weight, A = 3, 60:
>u = [0.2 0.1]*wts - 0.005*3*risks'

>plot(wts(1,:),u)

How would we handle this problem if we allowed short

positions? Is there even a solution?

Are there limits on short positions? How would we formulate

this in a quadratic programming context?
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Value-at-Risk

Our last topic in this section is a brief look at measuring short

term riskiness of a portfolio of stocks. The measure is a number

called the value-at-risk (VaR) of the portfolio.

How much could we lose? We suppose that:

Our portfolio's current value is W0 and the future (random)

wealth is W = W0 (1 + R) in a (short) time interval δt.

So our change in wealth over this time is

δW = W −W0 = W0R

We ask: with a con�dence level of 1− α what is the worse

that could happen, i.e., the (positive) number VaR such that

P [δW ≤ −VaR] = 1− α.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business
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Value-at-Risk

How much could we lose?

Last probability is same as P

[
R ≤ −VaR

W0

]
= 1− α.

Now assume random rate of return R has a known distribution

with c.d.f. F (r), so that

P

[
R ≤ −VaR

W0

]
= F

(
VaR

W0

)
.

We say that at a con�dence level α (e.g., α = 0.95), We look

for the number VaR such that

F (r1−α) = F

(
−VaR

W0

)
= 1− α

and solve for VaR .

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business
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Example

Text example (p. 85):

We have a portfolio of two assets with weights 2/3 and 1/3. Daily
volatilities are σ1 = 2% and σ2 = 1%, which translate into

variances of σ2 · δt for the time period, where σ is the daily

volatility of the portfolio. Also, (daily) correlation is ρ = 0.7 and δt
is 10 days. Assume the rate of return is normally distributed with

mean zero and standard deviation given by the volatility of the

portfolio. What is the VaR on a ten million dollar investment?

Calculate the volatility of the portfolio.

Use the norm_inv.m function to determine the VaR.

What if the stocks were negatively correlated by ρ = −.7?

We should factor in the drift µ, if the time line is very long.

How? Add growth to VaR.

VaR su�ers some severe defects. For one, it is not subadditive,

that is, we could have assets A and B such that

VaR (A + B) > VaR (A) + VaR (B) . This is odd indeed!
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