JDEP 384H: Numerical Methods in Business

Instructor: Thomas Shores
Department of Mathematics

Lecture 10, February 8, 2007
110 Kaufmann Center
Outline

1. Basic Financial Assets and Related Issues
 - Bond Portfolio Immunization (Revisited)

2. BT 2.4: Portfolio Optimization
 - Utility Theory
 - Mean-Variance Portfolio Optimization
1. Basic Financial Assets and Related Issues
 - Bond Portfolio Immunization (Revisited)

2. BT 2.4: Portfolio Optimization
 - Utility Theory
 - Mean-Variance Portfolio Optimization
Example

Use Matlab to determine the correct weighting of three bonds with durations 2, 4, 6 and convexities 12, 15, 20, respectively, if we are to shape a portfolio with duration 3 and convexity 13.

Solution. Use the First Pass strategy. Work this system out with Matlab. What happens if no short positions are allowed? What about the Second Pass?

With 3 bonds, we’re stuck. But increase the number by, say one, to 4 bonds. Now we have a new situation of 3 equations in 4 unknowns. Since unknowns exceed equations, we can expect infinitely many solutions if any at all (see Linear Algebra Lecture)! So which do we select?
Immunization Strategies

Idea: Use the extra degree(s) of freedom to turn the problem into a linear programming problem. For example, maximize the weighted yield of the portfolio. Say the bonds have yields Y_1, Y_2, Y_3, Y_4. The problem becomes: Maximize the objective function

$$f(w_1, w_2, w_3, w_4) = Y_1 w_1 + Y_2 w_2 + Y_3 w_3 + Y_3 w_3 + Y_4 w_4$$

subject the the three constraints as in first pass with four variables.

An example portfolio consists of:

a weighted combination (no short positions) of four bonds with durations 2, 3, 4, 6, convexities 12, 12.5, 15, 20, and yields 0.06, 0.061, 0.065, 0.07, respectively. How to maximize yield?

- Use Matlab to solve this problem. If there is a solution, what is the maximum yield?
- What if we relax the convexity constraint to having convexity at least 13? Portfolio yield?
- What if we drop the convexity constraint altogether? Portfolio yield and convexity?
Idea: Use the extra degree(s) of freedom to turn the problem into a linear programming problem. For example, maximize the weighted yield of the portfolio. Say the bonds have yields Y_1, Y_2, Y_3, Y_4. The problem becomes: Maximize the objective function

$$f(w_1, w_2, w_3, w_4) = Y_1 w_1 + Y_2 w_2 + Y_3 w_3 + Y_3 w_3 + Y_4 w_4$$

subject the the three constraints as in first pass with four variables.

An example portfolio consists of:

A weighted combination (no short positions) of four bonds with durations 2, 3, 4, 6, convexities 12, 12.5, 15, 20, and yields 0.06, 0.061, 0.065, 0.07, respectively. How to maximize yield?

- Use Matlab to solve this problem. If there is a solution, what is the maximum yield?
- What if we relax the convexity constraint to having convexity at least 13? Portfolio yield?
- What if we drop the convexity constraint altogether? Portfolio yield and convexity?
Idea: Use the extra degree(s) of freedom to turn the problem into a linear programming problem. For example, maximize the weighted yield of the portfolio. Say the bonds have yields Y_1, Y_2, Y_3, Y_4. The problem becomes: Maximize the objective function

$$f(w_1, w_2, w_3, w_4) = Y_1 w_1 + Y_2 w_2 + Y_3 w_3 + Y_3 w_3 + Y_4 w_4$$

subject to the three constraints as in first pass with four variables.

An example portfolio consists of:

- a weighted combination (no short positions) of four bonds with durations 2, 3, 4, 6, convexities 12, 12.5, 15, 20, and yields 0.06, 0.061, 0.065, 0.07, respectively. How to maximize yield?
 1. Use Matlab to solve this problem. If there is a solution, what is the maximum yield?
 2. What if we relax the convexity constraint to having convexity at least 13? Portfolio yield?
 3. What if we drop the convexity constraint altogether? Portfolio yield and convexity?
Idea: Use the extra degree(s) of freedom to turn the problem into a linear programming problem. For example, maximize the weighted yield of the portfolio. Say the bonds have yields Y_1, Y_2, Y_3, Y_4. The problem becomes: Maximize the objective function

$$f(w_1, w_2, w_3, w_4) = Y_1 w_1 + Y_2 w_2 + Y_3 w_3 + Y_3 w_3 + Y_4 w_4$$

subject the the three constraints as in first pass with four variables.

An example portfolio consists of:

a weighted combination (no short positions) of four bonds with durations 2, 3, 4, 6, convexities 12, 12.5, 15, 20, and yields 0.06, 0.061, 0.065, 0.07, respectively. How to maximize yield?

- Use Matlab to solve this problem. If there is a solution, what is the maximum yield?
- What if we relax the convexity constraint to having convexity at least 13? Portfolio yield?
- What if we drop the convexity constraint altogether? Portfolio yield and convexity?
Outline

1. Basic Financial Assets and Related Issues
 - Bond Portfolio Immunization (Revisited)

2. BT 2.4: Portfolio Optimization
 - Utility Theory
 - Mean-Variance Portfolio Optimization
Quantifying Risk and Risk Tolerance

We examine portfolios of risky securities, such as stocks. Note: In fact, bonds have an element of risk too!

Risk:

How can we measure risk?

- The return on our investment is wealth X, which is now a random variable. So are the returns R_i of each stock in our portfolio.
- As such, returns have an expected value (mean) $x = E[X]$ which is the weighted sum of the expected returns r_i of the ith stock.
- Variability of a r.v. is measured by its standard deviation. Hence the risk of the ith stock is just $\sigma_i = \sqrt{\text{Var}(R_i)}$.
- Competing goals: maximize return, minimize risk.
We examine portfolios of risky securities, such as stocks. Note: In fact, bonds have an element of risk too!

Risk:

How can we measure risk?

- The return on our investment is wealth X, which is now a random variable. So are the returns R_i of each stock in our portfolio.

- As such, returns have an expected value (mean) $x = E[X]$ which is the weighted sum of the expected returns r_i of the ith stock.

- Variability of a r.v. is measured by its standard deviation. Hence the risk of the ith stock is just $\sigma_i = \sqrt{\text{Var}(R_i)}$.

- Competing goals: maximize return, minimize risk.
Quantifying Risk and Risk Tolerance

We examine portfolios of risky securities, such as stocks. Note: In fact, bonds have an element of risk too!

Risk:

How can we measure risk?

- The return on our investment is wealth X, which is now a random variable. So are the returns R_i of each stock in our portfolio.

- As such, returns have an expected value (mean) $x = E[X]$ which is the weighted sum of the expected returns r_i of the ith stock.

- Variability of a r.v. is measured by its standard deviation. Hence the risk of the ith stock is just $\sigma_i = \sqrt{\text{Var}(R_i)}$.

- Competing goals: maximize return, minimize risk.
We examine portfolios of **risky securities**, such as stocks. Note: In fact, bonds have an element of risk too!

Risk:

How can we measure risk?

- The return on our investment is wealth X, which is now a random variable. So are the returns R_i of each stock in our portfolio.
- As such, returns have an **expected value** (mean) $x = E[X]$ which is the weighted sum of the expected returns r_i of the ith stock.
- Variability of a r.v. is measured by its standard deviation. Hence the **risk** of the ith stock is just $\sigma_i = \sqrt{\text{Var}(R_i)}$.
- Competing goals: maximize return, minimize risk.
We examine portfolios of **risky securities**, such as stocks. Note: In fact, bonds have an element of risk too!

Risk:

How can we measure risk?

- The return on our investment is wealth X, which is now a random variable. So are the returns R_i of each stock in our portfolio.

- As such, returns have an **expected value** (mean) $x = E[X]$ which is the weighted sum of the expected returns r_i of the ith stock.

- Variability of a r.v. is measured by its standard deviation. Hence the **risk** of the ith stock is just $\sigma_i = \sqrt{\text{Var}(R_i)}$.

- Competing goals: maximize return, minimize risk.
One way to quantify an investor’s preferences:

Utility Function \(u(x) \) of payoff \(x \):

A numerical measure of satisfaction gained from a payoff \(x \).

- Normally, \(u \) is monotone increasing with \(x \).
- Normally, \(u \) is concave (concave down) implies that \(u''(x) < 0 \), which implies that \(u'(x) \) is decreasing.
- Hence concavity is a measure of risk aversion, because it implies that each increment to wealth conveys progressively smaller increments to utility.
- Two examples: \(u(x) = \log x \) and \(u(x) = x - \frac{\lambda}{2}x^2 \) (\(x \leq 1/\lambda \)).

There are other types of utility functions, e.g., we could have \(u \) depend on the expected rate of return and variance

\[
u = r - 0.005 \cdot A \cdot \sigma^2
\]
So What Do You Want?

One way to quantify an investor’s preferences;

Utility Function \(u(x)\) of payoff \(x\):

A numerical measure of satisfaction gained from a payoff \(x\).

- Normally, \(u\) is monotone increasing with \(x\).
- Normally, \(u\) is concave (concave down) implies that \(u''(x) < 0\), which implies that \(u'(x)\) is decreasing.
- Hence concavity is a measure of risk aversion, because it implies that each increment to wealth conveys progressively smaller increments to utility.
- Two examples: \(u(x) = \log x\) and \(u(x) = x - \frac{\lambda}{2} x^2 \quad (x \leq 1/\lambda)\).

There are other types of utility functions, e.g., we could have \(u\) depend on the expected rate of return and variance

\[u = r - 0.005 \cdot A \cdot \sigma^2 \]
So What Do You Want?

One way to quantify an investor’s preferences;

Utility Function $u(x)$ of payoff x:

A numerical measure of satisfaction gained from a payoff x.

- Normally, u is monotone increasing with x.
- Normally, u is concave (concave down) implies that $u''(x) < 0$, which implies that $u'(x)$ is decreasing.
- Hence concavity is a measure of risk aversion, because it implies that each increment to wealth conveys progressively smaller increments to utility.
- Two examples: $u(x) = \log x$ and $u(x) = x - \frac{\lambda}{2}x^2 \ (x \leq 1/\lambda)$.

There are other types of utility functions, e.g., we could have u depend on the expected rate of return and variance

$$u = r - 0005 \cdot A \cdot \sigma^2$$
So What Do You Want?

One way to quantify an investor’s preferences;

Utility Function \(u(x) \) of payoff \(x \):

A numerical measure of satisfaction gained from a payoff \(x \).

- Normally, \(u \) is monotone increasing with \(x \).
- Normally, \(u \) is concave (concave down) implies that \(u''(x) < 0 \), which implies that \(u'(x) \) is decreasing.
- Hence concavity is a measure of risk aversion, because it implies that each increment to wealth conveys progressively smaller increments to utility.

- Two examples: \(u(x) = \log x \) and \(u(x) = x - \frac{\lambda}{2} x^2 (x \leq 1/\lambda) \).

There are other types of utility functions, e.g., we could have \(u \) depend on the expected rate of return and variance

\[
u = r - 0.005 \cdot A \cdot \sigma^2
\]
So What Do You Want?

One way to quantify an investor’s preferences;

Utility Function \(u(x) \) of payoff \(x \):

A numerical measure of satisfaction gained from a payoff \(x \).

- Normally, \(u \) is monotone increasing with \(x \).
- Normally, \(u \) is concave (concave down) implies that \(u''(x) < 0 \), which implies that \(u'(x) \) is decreasing.
- Hence concavity is a measure of risk aversion, because it implies that each increment to wealth conveys progressively smaller increments to utility.
- Two examples: \(u(x) = \log x \) and \(u(x) = x - \frac{\lambda}{2} x^2 \) \((x \leq 1/\lambda)\).

There are other types of utility functions, e.g., we could have \(u \) depend on the expected rate of return and variance

\[
u = r - 0.005 \cdot A \cdot \sigma^2
\]
Consequences of Utility Approach:

- Obtain measures of degree of risk aversion (Arrow-Pratt absolute and relative risk aversion coefficients):
 \[R_u^a(x) = -\frac{u''(x)}{u'(x)} \quad \text{and} \quad R_u^r(x) = -\frac{u''(x)}{u'(x)} x \]

- Portfolio optimization becomes a math problem: Given initial wealth \(W_0 \), a set of assets with return \(R_i \) (a random variable), and portfolio with \(x_i \) dollars of \(i \)th asset,

 \[
 \max E \left[u\left(x_1 R_1 + \cdots + x_n R_n \right) \right]
 \]

 subject to \(x_1 + \cdots + x_n = W_0 \).
So What Do You Want?

Consequences of Utility Approach:

- Obtain measures of degree of risk aversion (Arrow-Pratt absolute and relative risk aversion coefficients):

\[R^a_u(x) = -\frac{u''(x)}{u'(x)} \quad \text{and} \quad R^r_u(x) = -\frac{u''(x)x}{u'(x)} \]

- Portfolio optimization becomes a math problem: Given initial wealth \(W_0 \), a set of assets with return \(R_i \) (a random variable), and portfolio with \(x_i \) dollars of \(i \)th asset,

\[
\max E [u (x_1 R_1 + \cdots + x_n R_n)]
\]

subject to \(x_1 + \cdots + x_n = W_0 \).
Consequences of Utility Approach:

- Obtain measures of degree of risk aversion (Arrow-Pratt absolute and relative risk aversion coefficients):
 \[R_u^a(x) = -\frac{u''(x)}{u'(x)} \quad \text{and} \quad R_u^r(x) = -\frac{u''(x)x}{u'(x)} \]

- Portfolio optimization becomes a math problem: Given initial wealth \(W_0 \), a set of assets with return \(R_i \) (a random variable), and portfolio with \(x_i \) dollars of \(i \)th asset,

\[
\max E \left[u \left(x_1 R_1 + \cdots + x_n R_n \right) \right]
\]

subject to \(x_1 + \cdots + x_n = W_0 \).
Outline

1. Basic Financial Assets and Related Issues
 - Bond Portfolio Immunization (Revisited)

2. BT 2.4: Portfolio Optimization
 - Utility Theory
 - Mean-Variance Portfolio Optimization
Following text, we’ll stick to a portfolio of two risky assets for purpose of illustration. Rather than use absolute quantities, we use rates of return. For simplicity, examine a portfolio of two assets.

- The absolute x_i above are replaced by fractions w_i, where $w_1 + w_2 = 1$ and we denote the vector $[w_1; w_2]$ by w.
- Assume no short positions, so the $w_i \geq 0$.
- Rates of return on investments are r_1, r_2, respectively, so rate of return of portfolio is $r = w_1 r_1 + w_2 r_2$.
- The expected returns are \bar{r}_1, \bar{r}_2 and $\bar{r} = w_1 \bar{r}_1 + w_2 \bar{r}_2$.
- The r.v.’s r_1, r_2 have covariance matrix Σ, so that the variance of our portfolio is

$$\text{Var} (w_1 r_1 + w_2 r_2) = w^T \Sigma w.$$
Following text, we’ll stick to a portfolio of two risky assets for purpose of illustration. Rather than use absolute quantities, we use rates of return. For simplicity, examine a portfolio of two assets.

- The absolute x_i above are replaced by fractions w_i, where $w_1 + w_2 = 1$ and we denote the vector $[w_1; w_2]$ by w.
- Assume no short positions, so the $w_i \geq 0$.
- Rates of return on investments are r_1, r_2, respectively, so rate of return of portfolio is $r = w_1 r_1 + w_2 r_2$.
- The expected returns are \bar{r}_1, \bar{r}_2 and $\bar{r} = w_1 \bar{r}_1 + w_2 \bar{r}_2$.
- The r.v.’s r_1, r_2 have covariance matrix Σ, so that the variance of our portfolio is

$$\text{Var} (w_1 r_1 + w_2 r_2) = w^T \Sigma w.$$
Following text, we’ll stick to a portfolio of two risky assets for purpose of illustration. Rather than use absolute quantities, we use rates of return. For simplicity, examine a portfolio of two assets.

- The absolute x_i above are replaced by fractions w_i, where $w_1 + w_2 = 1$ and we denote the vector $[w_1; w_2]$ by \mathbf{w}.
- Assume no short positions, so the $w_i \geq 0$.
- Rates of return on investments are r_1, r_2, respectively, so rate of return of portfolio is $r = w_1 r_1 + w_2 r_2$.
- The expected returns are \bar{r}_1, \bar{r}_2 and $\bar{r} = w_1 \bar{r}_1 + w_2 \bar{r}_2$.
- The r.v.’s r_1, r_2 have covariance matrix Σ, so that the variance of our portfolio is

$$\text{Var} (w_1 r_1 + w_2 r_2) = \mathbf{w}^T \Sigma \mathbf{w}.$$
Following text, we’ll stick to a portfolio of two risky assets for purpose of illustration. Rather than use absolute quantities, we use rates of return. For simplicity, examine a portfolio of two assets.

- The absolute x_i above are replaced by fractions w_i, where $w_1 + w_2 = 1$ and we denote the vector $[w_1; w_2]$ by w.
- Assume no short positions, so the $w_i \geq 0$.
- Rates of return on investments are r_1, r_2, respectively, so rate of return of portfolio is $r = w_1 r_1 + w_2 r_2$.
- The expected returns are \bar{r}_1, \bar{r}_2 and $\bar{r} = w_1 \bar{r}_1 + w_2 \bar{r}_2$.
- The r.v.’s r_1, r_2 have covariance matrix Σ, so that the variance of our portfolio is

$$\text{Var} (w_1 r_1 + w_2 r_2) = w^T \Sigma w.$$
Following text, we’ll stick to a portfolio of two risky assets for purpose of illustration. Rather than use absolute quantities, we use rates of return. For simplicity, examine a portfolio of two assets.

- The absolute x_i above are replaced by fractions w_i, where $w_1 + w_2 = 1$ and we denote the vector $[w_1; w_2]$ by w.
- Assume no short positions, so the $w_i \geq 0$.
- Rates of return on investments are r_1, r_2, respectively, so rate of return of portfolio is $r = w_1 r_1 + w_2 r_2$.
- The expected returns are \bar{r}_1, \bar{r}_2 and $\bar{r} = w_1 \bar{r}_1 + w_2 \bar{r}_2$.
- The r.v.’s r_1, r_2 have covariance matrix Σ, so that the variance of our portfolio is

$$\text{Var} (w_1 r_1 + w_2 r_2) = w^T \Sigma w.$$
For a given expected return \bar{r}_T, what weighting gives the minimum variance?

Answer: the solution to the quadratic programming problem:

$$\min_w w^T \Sigma w$$

subject to

$$w^T \bar{r} = \bar{r}_T$$

$$w^T 1 = 1$$

What is the range of possible expected returns? Examine the definition.
For a given expected return \(\bar{r}_T \), what weighting gives the minimum variance?

Answer: the solution to the quadratic programming problem:

\[
\min_w w^T \Sigma w
\]

subject to

\[
w^T \bar{r} = \bar{r}_T
\]

\[
w^T 1 = 1
\]

What is the range of possible expected returns? Examine the definition.
Problems:

- For a given expected return \bar{r}_T, what weighting gives the minimum variance?
- Answer: the solution to the quadratic programming problem:

$$\min w^T \Sigma w$$

subject to

$$w^T \bar{r} = \bar{r}_T$$

$$w^T 1 = 1$$

What is the range of possible expected returns? Examine the definition.
Problems:

- For a given expected return \(\bar{r}_T \), what weighting gives the minimum variance?
- Answer: the solution to the quadratic programming problem:

\[
\min w^T \Sigma w \\
\text{subject to} \\
 w^T \bar{\mathbf{r}} = \bar{r}_T \\
 w^T \mathbf{1} = 1
\]

- What is the range of possible expected returns? Examine the definition.
Definition

A portfolio is **efficient** if it is not possible to obtain a higher expected return without increasing the risk.

Definition

An **efficient frontier** is a graph of efficient portfolio’s risk versus expected return.

Example

From text, p. 74, suppose two assets have expected earning rates $\bar{r}_1 = 0.2$, $\bar{r}_2 = 0.1$, $\sigma_1^2 = 0.2$, $\sigma_2^2 = 0.4$ and $\sigma_{12} = -0.1$. Design an efficient frontier for this problem using Matlab. How would we find the leftmost point on the graph?
Definition

A portfolio is **efficient** if it is not possible to obtain a higher expected return without increasing the risk.

Definition

An **efficient frontier** is a graph of efficient portfolio’s risk versus expected return.

Example

From text, p. 74, suppose two assets have expected earning rates $\bar{r}_1 = 0.2$, $\bar{r}_2 = 0.1$, $\sigma_1^2 = 0.2$, $\sigma_2^2 = 0.4$ and $\sigma_{12} = -0.1$. Design an efficient frontier for this problem using Matlab. How would we find the leftmost point on the graph?
Definition
A portfolio is **efficient** if it is not possible to obtain a higher expected return without increasing the risk.

Definition
An **efficient frontier** is a graph of efficient portfolio’s risk versus expected return.

Example
From text, p. 74, suppose two assets have expected earning rates $\bar{r}_1 = 0.2$, $\bar{r}_2 = 0.1$, $\sigma_1^2 = 0.2$, $\sigma_2^2 = 0.4$ and $\sigma_{12} = -0.1$. Design an efficient frontier for this problem using Matlab. How would we find the leftmost point on the graph?