## JDEP 384H: Numerical Methods in Business

Instructor: Thomas Shores Department of Mathematics

Lecture 5, January 23, 2007 110 Kaufmann Center



## Outline

Joint Random Variables

Vector Random Vectors



# Some Conceptual Calculations

After examining the section on on joint random variables: Dart throws are independently of each other. X and Y are the location of the dart on [0,1].

Think about the following:

- What is the joint p.d.f. for these r.v.'s?
- What is the liklihood of achieving a "score" at most 1/2?
- What is the expected value of the score?

After examining the ProbStatLecture section on vector random variables:

#### Asset evaluation (cf. text, p.85):

- What is the expectation and variance of  $R = (R_1, R_2)$ ?
- What is the expectation and variance of R<sub>w</sub>?
- If  $R_1$  and  $R_2$  are jointly bivariate normal, what does the joint p.d.f. look like?
- Is there a weighting that would minimize volatility as measured by variance? If so, what would its rate of return be?

After examining the ProbStatLecture section on vector random variables:

#### Asset evaluation (cf. text, p.85):

- What is the expectation and variance of  $R = (R_1, R_2)$ ?
- What is the expectation and variance of  $R_w$ ?
- If  $R_1$  and  $R_2$  are jointly bivariate normal, what does the joint p.d.f. look like?
- Is there a weighting that would minimize volatility as measured by variance? If so, what would its rate of return be?

After examining the ProbStatLecture section on vector random variables:

#### Asset evaluation (cf. text, p.85):

- What is the expectation and variance of  $R = (R_1, R_2)$ ?
- What is the expectation and variance of  $R_w$ ?
- If  $R_1$  and  $R_2$  are jointly bivariate normal, what does the joint p.d.f. look like?
- Is there a weighting that would minimize volatility as measured by variance? If so, what would its rate of return be?

After examining the ProbStatLecture section on vector random variables:

#### Asset evaluation (cf. text, p.85):

- What is the expectation and variance of  $R = (R_1, R_2)$ ?
- What is the expectation and variance of  $R_w$ ?
- If  $R_1$  and  $R_2$  are jointly bivariate normal, what does the joint p.d.f. look like?
- Is there a weighting that would minimize volatility as measured by variance? If so, what would its rate of return be?