JDEP 384H: Numerical Methods in Business

Instructor: Thomas Shores
Department of Mathematics

Lecture 26, April 19, 2007
110 Kaufmann Center
Outline

1. **NT: Decision Analysis and Game Theory**
 - An Intelligent Opponent: Game Theory
 - An Indifferent Opponent: Nature
 - Decision Making Without Experimentation
 - Decision Making with Experimentation
Our Schedule:

- Tuesday, April 24: Finish course with examples from game theory and decision analysis.
- Wednesday, April 25: Official due date for Assignment 5, though I will accept homework on Thursday, April 26, without penalty.
- Thursday, April 27: Discuss the final exam and do in-class course evaluations. In addition, you should do on-line evaluations, about which you should have been notified by email.
- Tuesday, May 1: Final Exam in 110 Kaufmann Center.
Our Schedule:

- **Tuesday, April 24:** Finish course with examples from game theory and decision analysis.
- **Wednesday, April 25:** Official due date for Assignment 5, though I will accept homework on Thursday, April 26, without penalty.
- **Thursday, April 27:** Discuss the final exam and do in-class course evaluations. In addition, you should do on-line evaluations, about which you should have been notified by email.
- **Tuesday, May 1:** Final Exam in 110 Kaufmann Center.
Our Schedule:

- **Tuesday, April 24:** Finish course with examples from game theory and decision analysis.
- **Wednesday, April 25:** Official due date for Assignment 5, though I will accept homework on Thursday, April 26, without penalty.
- **Thursday, April 27:** Discuss the final exam and do in-class course evaluations. In addition, you should do on-line evaluations, about which you should have been notified by email.
- **Tuesday, May 1:** Final Exam in 110 Kaufmann Center.
Our Schedule:

- **Tuesday, April 24:** Finish course with examples from game theory and decision analysis.
- **Wednesday, April 25:** Official due date for Assignment 5, though I will accept homework on Thursday, April 26, without penalty.
- **Thursday, April 27:** Discuss the final exam and do in-class course evaluations. In addition, you should do on-line evaluations, about which you should have been notified by email.
- **Tuesday, May 1:** Final Exam in 110 Kaufmann Center.
Our Schedule:

- **Tuesday, April 24:** Finish course with examples from game theory and decision analysis.
- **Wednesday, April 25:** Official due date for Assignment 5, though I will accept homework on Thursday, April 26, without penalty.
- **Thursday, April 27:** Discuss the final exam and do in-class course evaluations. In addition, you should do on-line evaluations, about which you should have been notified by email.
- **Tuesday, May 1:** Final Exam in 110 Kaufmann Center.
Outline

1. NT: Decision Analysis and Game Theory
 - An Intelligent Opponent: Game Theory
 - An Indifferent Opponent: Nature
 - Decision Making Without Experimentation
 - Decision Making with Experimentation
Outline

1. NT: Decision Analysis and Game Theory
 - An Intelligent Opponent: Game Theory
 - An Indifferent Opponent: Nature
 - Decision Making Without Experimentation
 - Decision Making with Experimentation
A small game company, Sixth Degree, has invested considerable effort in preliminary development on a game concept that they believe holds promise. The showed a preliminary prototype at the annual game developer trade show E3 in March.

- Subsequently they found producers who wants to purchase the IP for $850,000 (the best offer) and continue development without further involvement with Sixth Degree.
- They were also encouraged by some producers to develop a full working prototype and then sell the IP to the producers with a better purchase price and some handsome royalty arrangements.
- A decision has to be made, i.e., a pure strategy has to be selected, and a mixed strategy won’t do as a substitute. What to do?
A small game company, Sixth Degree, has invested considerable effort in preliminary development on a game concept that they believe holds promise. The showed a preliminary prototype at the annual game developer trade show E3 in March.

- Subsequently they found producers who wants to purchase the IP for $850,000 (the best offer) and continue development without further involvement with Sixth Degree.
- They were also encouraged by some producers to develop a full working prototype and then sell the IP to the producers with a better purchase price and some handsome royalty arrangements.
- A decision has to be made, i.e., a pure strategy has to be selected, and a mixed strategy won’t do as a substitute. What to do?
A Model Problem

The Problem:
A small game company, Sixth Degree, has invested considerable effort in preliminary development on a game concept that they believe holds promise. The showed a preliminary prototype at the annual game developer trade show E3 in March.

- Subsequently they found producers who wants to purchase the IP for $850,000 (the best offer) and continue development without further involvement with Sixth Degree.
- They were also encouraged by some producers to develop a full working prototype and then sell the IP to the producers with a better purchase price and some handsome royalty arrangements.
- A decision has to be made, i.e., a pure strategy has to be selected, and a mixed strategy won’t do as a substitute. What to do?
A small game company, Sixth Degree, has invested considerable effort in preliminary development on a game concept that they believe holds promise. The showed a preliminary prototype at the annual game developer trade show E3 in March.

- Subsequently they found producers who wants to purchase the IP for $850,000 (the best offer) and continue development without further involvement with Sixth Degree.
- They were also encouraged by some producers to develop a full working prototype and then sell the IP to the producers with a better purchase price and some handsome royalty arrangements.
- A decision has to be made, i.e., a pure strategy has to be selected, and a mixed strategy won’t do as a substitute. What
The Data:

- SD estimates the cost of further development to be about one million dollars.
- If the working prototype were accepted by one of the major producers, SD estimates that total profit from sale of the IP and negotiated royalties to be about seven million dollars.
- SD estimates the probability of this game being accepted at about 1/4.
- The data in “payoff table” form:

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>States of Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable</td>
</tr>
<tr>
<td>Develop IP</td>
<td>$7M</td>
</tr>
<tr>
<td>Sell IP</td>
<td>$0.85M</td>
</tr>
<tr>
<td>Prior Probabilities</td>
<td>0.25</td>
</tr>
</tbody>
</table>
The Data:

- SD estimates the cost of further development to be about one million dollars.
- If the working prototype were accepted by one of the major producers, SD estimates that total profit from sale of the IP and negotiated royalties to be about seven million dollars.
- SD estimates the probability of this game being accepted at about 1/4.
- The data in “payoff table” form:

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>States of Nature</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>Develop IP</td>
<td>$7M</td>
<td>−$1M</td>
<td></td>
</tr>
<tr>
<td>Sell IP</td>
<td>$0.85M</td>
<td>$0.85M</td>
<td></td>
</tr>
<tr>
<td>Prior Probabilities</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
</tr>
</tbody>
</table>
The Data:

- SD estimates the cost of further development to be about one million dollars.
- If the working prototype were accepted by one of the major producers, SD estimates that total profit from sale of the IP and negotiated royalties to be about seven million dollars.
- SD estimates the probability of this game being accepted at about 1/4.
- The data in “payoff table” form:

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>States of Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable</td>
</tr>
<tr>
<td>Develop IP</td>
<td>$7M</td>
</tr>
<tr>
<td>Sell IP</td>
<td>$0.85M</td>
</tr>
<tr>
<td>Prior Probabilities</td>
<td>0.25</td>
</tr>
</tbody>
</table>
The Data:

- SD estimates the cost of further development to be about one million dollars.
- If the working prototype were accepted by one of the major producers, SD estimates that total profit from sale of the IP and negotiated royalties to be about seven million dollars.
- SD estimates the probability of this game being accepted at about 1/4.

The data in “payoff table” form:

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>States of Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable</td>
</tr>
<tr>
<td>Develop IP</td>
<td>$7M</td>
</tr>
<tr>
<td>Sell IP</td>
<td>$0.85M</td>
</tr>
<tr>
<td>Prior Probabilities</td>
<td>0.25</td>
</tr>
</tbody>
</table>
The Data:

- SD estimates the cost of further development to be about one million dollars.
- If the working prototype were accepted by one of the major producers, SD estimates that total profit from sale of the IP and negotiated royalties to be about seven million dollars.
- SD estimates the probability of this game being accepted at about 1/4.
- The data in “payoff table” form:

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>States of Nature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable</td>
<td>Unacceptable</td>
</tr>
<tr>
<td>Develop IP</td>
<td>$7M</td>
<td>$-1M</td>
</tr>
<tr>
<td>Sell IP</td>
<td>$0.85M</td>
<td>$0.85M</td>
</tr>
<tr>
<td>Prior Probabilities</td>
<td>0.25</td>
<td>0.75</td>
</tr>
</tbody>
</table>
The Data:

- SD estimates the cost of further development to be about one million dollars.
- If the working prototype were accepted by one of the major producers, SD estimates that total profit from sale of the IP and negotiated royalties to be about seven million dollars.
- SD estimates the probability of this game being accepted at about 1/4.

The data in “payoff table” form:

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>States of Nature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable</td>
<td>Unacceptable</td>
</tr>
<tr>
<td>Develop IP</td>
<td>$7M</td>
<td>−$1M</td>
</tr>
<tr>
<td>Sell IP</td>
<td>$0.85M</td>
<td>$0.85M</td>
</tr>
<tr>
<td>Prior Probabilities</td>
<td>0.25</td>
<td>0.75</td>
</tr>
</tbody>
</table>
Outline

1. **NT: Decision Analysis and Game Theory**
 - An Intelligent Opponent: Game Theory
 - An Indifferent Opponent: Nature
 - Decision Making Without Experimentation
 - Decision Making with Experimentation
Maximin Strategy

Solution:
The idea is to look at the worst outcomes for each alternative, then choose the most favorable of worst payoffs. Since nature is not really a player, this only pertains to the company SD.

- Let’s work this example out at the board.
- Problem with this strategy: It makes sense when one is competing against a rational and malevolent opponent. Nature isn’t.
- Another problem: It ignores additional information (the probabilities), so is a very conservative choice.
Maximin Strategy

Solution:
The idea is to look at the worst outcomes for each alternative, then choose the most favorable of worst payoffs. Since nature is not really a player, this only pertains to the company SD.

- Let’s work this example out at the board.
- Problem with this strategy: It makes sense when one is competing against a rational and malevolent opponent. Nature isn’t.
- Another problem: It ignores additional information (the probabilities), so is a very conservative choice.
Maximin Strategy

Solution:
The idea is to look at the worst outcomes for each alternative, then choose the most favorable of worst payoffs. Since nature is not really a player, this only pertains to the company SD.

- Let’s work this example out at the board.
- Problem with this strategy: It makes sense when one is competing against a rational and malevolent opponent. Nature isn’t.
- Another problem: It ignores additional information (the probabilities), so is a very conservative choice.
Maximin Strategy

Solution:
The idea is to look at the worst outcomes for each alternative, then choose the most favorable of worst payoffs. Since nature is not really a player, this only pertains to the company SD.

- Let’s work this example out at the board.
- Problem with this strategy: It makes sense when one is competing against a rational and malevolent opponent. Nature isn’t.
- Another problem: It ignores additional information (the probabilities), so is a very conservative choice.
Solution:
Identify the most likely state of nature. From this state, find the decision alternative with the maximum payoff.

- Let’s work this example out at the board.
- Problem with this strategy: Although still accounting for all the data, it gives excessive weight to one piece of the data – the most likely state. What if there are states that are close in likelihood?
- So again it is a conservative choice whose value might diminish considerably if the prior probabilities are very far off.
Solution:
Identify the most likely state of nature. From this state, find the decision alternative with the maximum payoff.

- Let’s work this example out at the board.
- Problem with this strategy: Although still accounting for all the data, it gives excessive weight to one piece of the data – the most likely state. What if there are states that are close in likelihood?
- So again it is a conservative choice whose value might diminish considerably if the prior probabilities are very far off.
Solution:
Identify the most likely state of nature. From this state, find the decision alternative with the maximum payoff.

- Let’s work this example out at the board.
- Problem with this strategy: Although still accounting for all the data, it gives excessive weight to one piece of the data – the most likely state. What if there are states that are close in likelihood?
- So again it is a conservative choice whose value might diminish considerably if the prior probabilities are very far off.
Solution:

Identify the most likely state of nature. From this state, find the decision alternative with the maximum payoff.

- Let’s work this example out at the board.
- Problem with this strategy: Although still accounting for all the data, it gives excessive weight to one piece of the data – the most likely state. What if there are states that are close in likelihood?
- So again it is a conservative choice whose value might diminish considerably if the prior probabilities are very far off.
Solution:

Calculate the expected value of the payoff for each alternative using the best available estimates of the probabilities of the states of nature.

- Let’s work this example out at the board.
- Advantage: This strategy accounts for all the data and gives some weight to states that are not the most likely.
- Advantage: This strategy is amenable to a sensitivity analysis in terms of the prior probabilities. Let’s make a sensitivity graph of the decision regions based on the prior probability p of acceptable state. Plot expectation with each decision against p, $0 \leq p \leq 1$. We should make a payoff matrix, priors vector, and calculate the expected payoffs.
Solution:

Calculate the expected value of the payoff for each alternative using the best available estimates of the probabilities of the states of nature.

- Let’s work this example out at the board.
- Advantage: This strategy accounts for all the data and gives some weight to states that are not the most likely.
- Advantage: This strategy is amenable to a sensitivity analysis in terms of the prior probabilities. Let’s make a sensitivity graph of the decision regions based on the prior probability p of acceptable state. Plot expectation with each decision against p, $0 \leq p \leq 1$. We should make a payoff matrix, priors vector, and calculate the expected payoffs.
Bayes’ Decision Rule

Solution:

Calculate the expected value of the payoff for each alternative using the best available estimates of the probabilities of the states of nature.

- Let’s work this example out at the board.
- Advantage: This strategy accounts for all the data and gives some weight to states that are not the most likely.
- Advantage: This strategy is amenable to a sensitivity analysis in terms of the prior probabilities. Let’s make a sensitivity graph of the decision regions based on the prior probability p of acceptable state. Plot expectation with each decision against p, $0 \leq p \leq 1$. We should make a payoff matrix, priors vector, and calculate the expected payoffs.
Solution:
Calculate the expected value of the payoff for each alternative using the best available estimates of the probabilities of the states of nature.

- Let’s work this example out at the board.
- Advantage: This strategy accounts for all the data and gives some weight to states that are not the most likely.
- Advantage: This strategy is amenable to a sensitivity analysis in terms of the prior probabilities. Let’s make a sensitivity graph of the decision regions based on the prior probability p of acceptable state. Plot expectation with each decision against p, $0 \leq p \leq 1$. We should make a payoff matrix, priors vector, and calculate the expected payoffs.
Outline

1. NT: Decision Analysis and Game Theory
 - An Intelligent Opponent: Game Theory
 - An Indifferent Opponent: Nature
 - Decision Making Without Experimentation
 - Decision Making with Experimentation
An Experiment

The Experiment:

SD also made contact with a consulting firm, Game Development Consultants, that specializes in game business issues and has many high level contacts in the business.

- They could be hired to conduct a feasibility study of SD’s plans and estimate the probability of success, i.e., acceptable state in the case of development.
- Their success rates are no secret. In fact, GDC uses them to advertise their services. In situation such as SD finds itself, they made an favorable recommendation in 60% of the cases where product was developed and successful, and an unfavorable recommendation 80% of the cases where the not developed.
- The fee for this study is $30,000. What should SD do?
SD also made contact with a consulting firm, Game Development Consultants, that specializes in game business issues and has many high level contacts in the business.

- They could be hired to conduct a feasibility study of SD’s plans and estimate the probability of success, i.e., acceptable state in the case of development.
- Their success rates are no secret. In fact, GDC uses them to advertise their services. In situation such as SD finds itself, they made an favorable recommendation in 60% of the cases where product was developed and successful, and an unfavorable recommendation 80% of the cases where the not developed.
- The fee for this study is $30,000. What should SD do?
The Experiment:

SD also made contact with a consulting firm, Game Development Consultants, that specializes in game business issues and has many high level contacts in the business.

- They could be hired to conduct a feasibility study of SD’s plans and estimate the probability of success, i.e., acceptable state in the case of development.

- Their success rates are no secret. In fact, GDC uses them to advertise their services. In situation such as SD finds itself, they made an favorable recommendation in 60% of the cases where product was developed and successful, and an unfavorable recommendation 80% of the cases where the not developed.

- The fee for this study is $30,000. What should SD do?
SD also made contact with a consulting firm, Game Development Consultants, that specializes in game business issues and has many high level contacts in the business.

- They could be hired to conduct a feasibility study of SD’s plans and estimate the probability of success, i.e., acceptable state in the case of development.
- Their success rates are no secret. In fact, GDC uses them to advertise their services. In situation such as SD finds itself, they made an favorable recommendation in 60% of the cases where product was developed and successful, and an unfavorable recommendation 80% of the cases where the not developed.
- The fee for this study is $30,000. What should SD do?
The relevant tabular data:

<table>
<thead>
<tr>
<th>Consultant Recommendations</th>
<th>States of Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable</td>
</tr>
<tr>
<td>Develop</td>
<td>0.6</td>
</tr>
<tr>
<td>Sell</td>
<td></td>
</tr>
</tbody>
</table>

This table is equivalent to a table of conditional probabilities as follows. Call the matrix below \(C \) for conditional probability:

<table>
<thead>
<tr>
<th>Consultant Recommendations</th>
<th>States of Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable</td>
</tr>
<tr>
<td>Develop</td>
<td>(P(D</td>
</tr>
<tr>
<td>Sell</td>
<td>(P(S</td>
</tr>
</tbody>
</table>

We’re interested in posterior probabilities \(P(A|D) \), etc. These probabilities are backwards, aren’t they? What to do?

In fact, should we experiment at all? What would be the expected value of perfect information (EVPI) = expected payoff with perfect information - expected payoff without experimentation?
The relevant tabular data:

<table>
<thead>
<tr>
<th>Consultant Recommendations</th>
<th>States of Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable</td>
</tr>
<tr>
<td>Develop</td>
<td>0.6</td>
</tr>
<tr>
<td>Sell</td>
<td></td>
</tr>
</tbody>
</table>

This table is equivalent to a table of conditional probabilities as follows. Call the matrix below \(C \) for conditional probability:

<table>
<thead>
<tr>
<th>Consultant Recommendations</th>
<th>States of Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable</td>
</tr>
<tr>
<td>Develop</td>
<td>(P(D</td>
</tr>
<tr>
<td>Sell</td>
<td>(P(S</td>
</tr>
</tbody>
</table>

We’re interested in posterior probabilities \(P(A | D) \), etc. These probabilities are backwards, aren’t they? What to do?

In fact, should we experiment at all? What would be the expected value of perfect information (EVPI) = expected payoff with perfect information - expected payoff without experimentation?
The relevant tabular data:

<table>
<thead>
<tr>
<th>Consultant Recommendations</th>
<th>States of Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable</td>
</tr>
<tr>
<td>Develop</td>
<td>0.6</td>
</tr>
<tr>
<td>Sell</td>
<td></td>
</tr>
</tbody>
</table>

This table is equivalent to a table of conditional probabilities as follows. Call the matrix below \(C \) for conditional probability:

<table>
<thead>
<tr>
<th>Consultant Recommendations</th>
<th>States of Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable</td>
</tr>
<tr>
<td>Develop</td>
<td>(P(D</td>
</tr>
<tr>
<td>Sell</td>
<td>(P(S</td>
</tr>
</tbody>
</table>

We’re interested in posterior probabilities \(P(A | D) \), etc. These probabilities are backwards, aren’t they? What to do?

In fact, should we experiment at all? What would be the expected value of perfect information (EVPI) = expected payoff with perfect information - expected payoff without experimentation?
The relevant tabular data:

<table>
<thead>
<tr>
<th>Consultant Recommendations</th>
<th>States of Nature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable</td>
<td>Unacceptable</td>
</tr>
<tr>
<td>Develop</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Sell</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This table is equivalent to a table of conditional probabilities as follows. Call the matrix below C for conditional probability:

<table>
<thead>
<tr>
<th>Consultant Recommendations</th>
<th>States of Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable</td>
</tr>
<tr>
<td>Develop</td>
<td>$P(D</td>
</tr>
<tr>
<td>Sell</td>
<td>$P(S</td>
</tr>
</tbody>
</table>

We’re interested in posterior probabilities $P(A | D)$, etc. These probabilities are backwards, aren’t they? What to do?

In fact, should we experiment at all? What would be the expected value of perfect information (EVPI) = expected payoff with perfect information - expected payoff without experimentation?
The relevant tabular data:

<table>
<thead>
<tr>
<th>Consultant Recommendations</th>
<th>States of Nature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable</td>
<td>Unacceptable</td>
</tr>
<tr>
<td>Develop</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Sell</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This table is equivalent to a table of conditional probabilities as follows. Call the matrix below C for conditional probability:

<table>
<thead>
<tr>
<th>Consultant Recommendations</th>
<th>States of Nature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable</td>
<td>Unacceptable</td>
</tr>
<tr>
<td>Develop</td>
<td>$P(D \mid A)$</td>
<td>$P(D \mid U)$</td>
</tr>
<tr>
<td>Sell</td>
<td>$P(S \mid A)$</td>
<td>$P(S \mid U)$</td>
</tr>
</tbody>
</table>

We’re interested in posterior probabilities $P(A \mid D)$, etc. These probabilities are backwards, aren’t they? What to do?

In fact, should we experiment at all? What would be the expected value of perfect information (EVPI) = expected payoff with perfect information - expected payoff without experimentation?
The relevant tabular data:

<table>
<thead>
<tr>
<th>Consultant Recommendations</th>
<th>States of Nature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable</td>
<td>Unacceptable</td>
</tr>
<tr>
<td>Develop</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Sell</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

This table is equivalent to a table of conditional probabilities as follows. Call the matrix below C for conditional probability:

<table>
<thead>
<tr>
<th>Consultant Recommendations</th>
<th>States of Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable</td>
</tr>
<tr>
<td>Develop</td>
<td>$P(D</td>
</tr>
<tr>
<td>Sell</td>
<td>$P(S</td>
</tr>
</tbody>
</table>

We’re interested in posterior probabilities $P(A | D)$, etc. These probabilities are backwards, aren’t they? What to do?

In fact, should we experiment at all? What would be the expected value of perfect information (EVPI) = expected payoff with perfect information - expected payoff without experimentation?
Facts that we will need in this decision analysis:

- **Law of Total Probability**: Given disjoint and exhaustive events \(E_1, E_2, \ldots, E_n \), and another event \(F \),

 \[
P(F) = \sum_{i=1}^{n} P(F \mid E_i) P(E_i)
\]

- **Bayes’ Theorem (Short Form)**:

 \[
P(E \mid F) \equiv \frac{P(F \mid E) P(E)}{P(F)}.
\]

- **Bayes’ Theorem (Long Form)**: With same notation and hypotheses as Law of Total Probability:

 \[
P(E_k \mid F) \equiv \frac{P(F \mid E_k) P(E_k)}{\sum_{i=1}^{n} P(F \mid E_i) P(E_i)}.
\]
Facts that we will need in this decision analysis:

- **Law of Total Probability**: Given disjoint and exhaustive events E_1, E_2, \ldots, E_n, and another event F,
 \[
 P(F) = \sum_{i=1}^{n} P(F \mid E_i) P(E_i)
 \]

- **Bayes’ Theorem (Short Form)**:
 \[
 P(E \mid F) \equiv \frac{P(F \mid E) P(E)}{P(F)}.
 \]

- **Bayes’ Theorem (Long Form)**: With same notation and hypotheses as Law of Total Probability:
 \[
 P(E_k \mid F) \equiv \frac{P(F \mid E_k) P(E_k)}{\sum_{i=1}^{n} P(F \mid E_i) P(E_i)}.
 \]
Conditional Probabilities

Facts that we will need in this decision analysis:

- **Law of Total Probability**: Given disjoint and exhaustive events E_1, E_2, \ldots, E_n, and another event F,

 $$ P(F) = \sum_{i=1}^{n} P(F \mid E_i) P(E_i) $$

- **Bayes’ Theorem (Short Form)**:

 $$ P(E \mid F) \equiv \frac{P(F \mid E) P(E)}{P(F)} $$

- **Bayes’ Theorem (Long Form)**: With same notation and hypotheses as Law of Total Probability:

 $$ P(E_k \mid F) \equiv \frac{P(F \mid E_k) P(E_k)}{\sum_{i=1}^{n} P(F \mid E_i) P(E_i)} $$
Facts that we will need in this decision analysis:

- **Law of Total Probability**: Given disjoint and exhaustive events E_1, E_2, \ldots, E_n, and another event F,

 $$P(F) = \sum_{i=1}^{n} P(F \mid E_i) P(E_j)$$

- **Bayes’ Theorem (Short Form)**:

 $$P(E \mid F) \equiv \frac{P(F \mid E) P(E)}{P(F)}.$$

- **Bayes’ Theorem (Long Form)**: With same notation and hypotheses as Law of Total Probability:

 $$P(E_k \mid F) \equiv \frac{P(F \mid E_k) P(E_k)}{\sum_{i=1}^{n} P(F \mid E_i) P(E_j)}.$$
The table (or matrix Q for posterior probabilities) that we want:

<table>
<thead>
<tr>
<th>State of Nature</th>
<th>Consultant Recommends</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Develop</td>
</tr>
<tr>
<td>Acceptable</td>
<td>$P(A</td>
</tr>
<tr>
<td>Unacceptable</td>
<td>$P(U</td>
</tr>
</tbody>
</table>

In matrix form Q can be calculated from Bayes’ theorem as

$$
\begin{bmatrix}
P(A|D) & P(A|S) \\
P(U|D) & P(U|S)
\end{bmatrix} = \begin{bmatrix}
\frac{P(D|A)P(A)}{P(D)} & \frac{P(S|A)P(A)}{P(S)} \\
\frac{P(D|U)P(U)}{P(D)} & \frac{P(S|U)P(U)}{P(S)}
\end{bmatrix}
$$

$$
\begin{bmatrix}
P(D) \\
P(S)
\end{bmatrix} = \begin{bmatrix}
P(D|A) & P(D|U) \\
P(S|A) & P(S|U)
\end{bmatrix}^T \begin{bmatrix}
\frac{1}{P(D)} & 0 \\
0 & \frac{1}{P(S)}
\end{bmatrix} \begin{bmatrix}
P(A) \\
P(U)
\end{bmatrix}.
$$
The table (or matrix Q for posterior probabilities) that we want:

<table>
<thead>
<tr>
<th>State of Nature</th>
<th>Consultant Recommends</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Develop</td>
</tr>
<tr>
<td>Acceptable</td>
<td>$P(A</td>
</tr>
<tr>
<td></td>
<td>$P(A</td>
</tr>
<tr>
<td>Unacceptable</td>
<td>$P(U</td>
</tr>
<tr>
<td></td>
<td>$P(U</td>
</tr>
</tbody>
</table>

In matrix form Q can be calculated from Bayes’ theorem as

$$
\begin{bmatrix}
P(A|D) & P(A|S) \\
P(U|D) & P(U|S)
\end{bmatrix}
= \begin{bmatrix}
\frac{P(D|A)P(A)}{P(D)} & \frac{P(S|A)P(A)}{P(S)} \\
\frac{P(D|U)P(U)}{P(D)} & \frac{P(S|U)P(U)}{P(S)}
\end{bmatrix}
\begin{bmatrix}
P(A) \\
P(U)
\end{bmatrix}
$$

and by the law of total probability

$$
\begin{bmatrix}
P(D) \\
P(S)
\end{bmatrix}
= \begin{bmatrix}
P(D|A) & P(D|U) \\
P(S|A) & P(S|U)
\end{bmatrix}
\begin{bmatrix}
P(A) \\
P(U)
\end{bmatrix}.
$$
The table (or matrix Q for posterior probabilities) that we want:

<table>
<thead>
<tr>
<th>State of Nature</th>
<th>Consultant Recommends</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Develop</td>
<td>Sell</td>
</tr>
<tr>
<td>Acceptable</td>
<td>$P(A</td>
<td>D)$</td>
</tr>
<tr>
<td>Unacceptable</td>
<td>$P(U</td>
<td>D)$</td>
</tr>
</tbody>
</table>

In matrix form Q can be calculated from Bayes’ theorem as

$$
\begin{bmatrix}
P(A|D) & P(A|S) \\
P(U|D) & P(U|S)
\end{bmatrix}
= \begin{bmatrix}
P(D|A)P(A) & P(S|A)P(A) \\
P(D|U)P(U) & P(S|U)P(U)
\end{bmatrix}
\begin{bmatrix}
P(D) & 0 \\
0 & P(U)
\end{bmatrix}^T
\begin{bmatrix}
\frac{1}{P(D)} & 0 \\
0 & \frac{1}{P(S)}
\end{bmatrix}
$$

and by the law of total probability

$$
\begin{bmatrix}
P(D) \\
P(S)
\end{bmatrix}
= \begin{bmatrix}
P(D|A) & P(D|U) \\
P(S|A) & P(S|U)
\end{bmatrix}
\begin{bmatrix}
P(A) \\
P(U)
\end{bmatrix}.
$$
The table (or matrix Q for posterior probabilities) that we want:

<table>
<thead>
<tr>
<th>State of Nature</th>
<th>Consultant Recommends</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Develop</td>
</tr>
<tr>
<td>Acceptable</td>
<td>$P(A</td>
</tr>
<tr>
<td>Unacceptable</td>
<td>$P(U</td>
</tr>
</tbody>
</table>

In matrix form Q can be calculated from Bayes’ theorem as

$$
\begin{bmatrix}
P(A|D) & P(A|S) \\
P(U|D) & P(U|S)
\end{bmatrix}
= \frac{P(D|A)P(A)}{P(D)} \begin{bmatrix}
P(D|A) & P(D|U) \\
P(S|A) & P(S|U)
\end{bmatrix}
\begin{bmatrix}
P(D) & 0 \\
P(U) & P(U)
\end{bmatrix}
= \begin{bmatrix}
P(A) & 0 \\
0 & P(U)
\end{bmatrix}
\begin{bmatrix}
P(D|A) & P(D|U) \\
P(S|A) & P(S|U)
\end{bmatrix}
\begin{bmatrix}
P(A) \\
P(U)
\end{bmatrix}
$$

and by the law of total probability

$$
\begin{bmatrix}
P(D) \\
P(S)
\end{bmatrix}
= \begin{bmatrix}
P(D|A) & P(D|U) \\
P(S|A) & P(S|U)
\end{bmatrix}
\begin{bmatrix}
P(A) \\
P(U)
\end{bmatrix}.$$
The table (or matrix Q for posterior probabilities) that we want:

<table>
<thead>
<tr>
<th>State of Nature</th>
<th>Consultant Recommends</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Develop</td>
</tr>
<tr>
<td>Acceptable</td>
<td>$P(A</td>
</tr>
<tr>
<td>Unacceptable</td>
<td>$P(U</td>
</tr>
</tbody>
</table>

In matrix form Q can be calculated from Bayes’ theorem as

$$
\begin{bmatrix}
P(A|D) & P(A|S) \\
P(U|D) & P(U|S)
\end{bmatrix} = \begin{bmatrix}
P(D|A)P(A) & P(S|A)P(A) \\
P(D|U)P(U) & P(S|U)P(U)
\end{bmatrix}
\begin{bmatrix}
P(D|A)P(A) & P(S|A)P(A) \\
P(D|U)P(U) & P(S|U)P(U)
\end{bmatrix}^T
= \begin{bmatrix}
P(A) & 0 \\
0 & P(U)
\end{bmatrix}
\begin{bmatrix}
P(D|A) & P(D|U) \\
P(S|A) & P(S|U)
\end{bmatrix}^T
\begin{bmatrix}
P(A) & 0 \\
0 & P(U)
\end{bmatrix}
$$

and by the law of total probability

$$
\begin{bmatrix}
P(D) \\
P(S)
\end{bmatrix} = \begin{bmatrix}
P(D|A) & P(D|U) \\
P(S|A) & P(S|U)
\end{bmatrix}
\begin{bmatrix}
P(A) \\
P(U)
\end{bmatrix}.
$$