JDEP 384H: Numerical Methods in Business

Instructor: Thomas Shores
Department of Mathematics

Lecture 25, April 17, 2007
110 Kaufmann Center
Outline

1. NT: Decision Analysis and Game Theory
 - An Intelligent Opponent: Game Theory
Outline

1. NT: Decision Analysis and Game Theory
 - An Intelligent Opponent: Game Theory
A Model Problem

The Problem:
Dominant strategy elimination and the more general maximin/minimax strategies will not solve the following problem.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3</td>
<td>1 2 3</td>
</tr>
<tr>
<td>1</td>
<td>2 3 -2</td>
<td>-1 4 0</td>
</tr>
<tr>
<td>2</td>
<td>-1 4 0</td>
<td>3 -2 -1</td>
</tr>
<tr>
<td>3</td>
<td>3 -2 -1</td>
<td>3 -2 -1</td>
</tr>
</tbody>
</table>
The Problem:

Dominant strategy elimination and the more general maximin/minimax strategies will not solve the following problem.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3</td>
</tr>
<tr>
<td>Player 1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2 3 -2</td>
</tr>
<tr>
<td>2</td>
<td>-1 4 0</td>
</tr>
<tr>
<td>3</td>
<td>3 -2 -1</td>
</tr>
</tbody>
</table>
Solution:

Use *mixed strategies* instead of pure strategies, i.e., a probability vector \((x_1, x_2, x_3)\) for player 1 \((y = (y_1, y_2, y_3)\) for player 2) that maximizes for player 1 (minimizes for player 2) the payoff for all possible plays by the opponent.

- If the payoff table is converted into a matrix \(A\) \((m \times n\) in general), then the payoff for any pair of mixed strategies is

\[
p = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_i y_j = x^T A y
\]

- Player 1’s goal: Find probability vector \(x\) solving

\[
\max_x \min_y x^T A y
\]

- Player 2’s goal: Find probability vector \(y\) solving

\[
\min_y \max_x x^T A y
\]
Solution:

Use *mixed strategies* instead of pure strategies, i.e., a probability vector \((x_1, x_2, x_3)\) for player 1 \((y = (y_1, y_2, y_3)\) for player 2) that maximizes for player 1 (minimizes for player 2) the payoff for all possible plays by the opponent.

- If the payoff table is converted into a matrix \(A\) \((m \times n\) in general), then the payoff for any pair of mixed strategies is

\[
p = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_i y_j = x^T A y
\]

- Player 1's goal: Find probability vector \(x\) solving

\[
\max_x \min_y x^T A y.
\]

- Player 2's goal: Find probability vector \(y\) solving

\[
\min_y \max_x x^T A y.
\]
Solution:
Use *mixed strategies* instead of pure strategies, i.e., a probability vector \((x_1, x_2, x_3)\) for player 1 \((y = (y_1, y_2, y_3)\) for player 2) that maximizes for player 1 (minimizes for player 2) the payoff for all possible plays by the opponent.

- If the payoff table is converted into a matrix \(A\) \((m \times n\) in general), then the payoff for any pair of mixed strategies is

\[
p = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_i y_j = x^T A y
\]

- Player 1’s goal: Find probability vector \(x\) solving

\[
\max_x \min_y x^T A y
\]

- Player 2’s goal: Find probability vector \(y\) solving

\[
\min_y \max_x x^T A y
\]
Solution:

Use mixed strategies instead of pure strategies, i.e., a probability vector \((x_1, x_2, x_3)\) for player 1 \((y = (y_1, y_2, y_3)\) for player 2\) that maximizes for player 1 (minimizes for player 2) the payoff for all possible plays by the opponent.

- If the payoff table is converted into a matrix \(A\) \((m \times n\) in general\), then the payoff for any pair of mixed strategies is

\[
p = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_i y_j = x^T A y
\]

- Player 1’s goal: Find probability vector \(x\) solving

\[
\max_{x} \min_{y} x^T A y
\]

- Player 2’s goal: Find probability vector \(y\) solving

\[
\min_{y} \max_{x} x^T A y
\]
Linear Programming to the Rescue:

We can solve either problem of the previous frame with linear programming tools as follows.

- **Key fact**: Both problems have a solution with common payoff p. In fact, they solve the linear programming programs $\max p \text{ subject to constraints } x^T A \geq p 1_{1,n}, x \geq 0, x^T 1_{m,1} = 1$, for player 1 and $\min p \text{ subject to constraints } A y \leq p 1_{m,1}, y \geq 0, 1_{1,n} y = 1$, for player 2. These linear programming problems are *dual* to each other.

- **Practical tip**: We can also insure that $p \geq 0$ by simply adding a constant to every payoff so that the table is nonnegative, computing the strategies and then subtracting the constant from the computed optimal payoff.

- Let’s set up all three examples as LP problems, both explicitly and in matrix form, and solve them with Matlab to determine optimal strategies for each game. Check requirements of *linprog* first.
Linear Programming to the Rescue:

We can solve either problem of the previous frame with linear programming tools as follows.

- **Key fact**: Both problems have a solution with common payoff p. In fact, they solve the linear programming programs max p subject to constraints $\mathbf{x}^T \mathbf{A} \geq \mathbf{p}_{1:n}$, $\mathbf{x} \geq \mathbf{0}$, $\mathbf{x}^T \mathbf{1}_{m,1} = 1$, for player 1 and min p subject to constraints $\mathbf{A} \mathbf{y} \leq \mathbf{p}_{1:m,1}$, $\mathbf{y} \geq \mathbf{0}$, $\mathbf{1}_{1:n} \mathbf{y} = 1$, for player 2. These linear programming problems are *dual* to each other.

- **Practical tip**: We can also insure that $p \geq 0$ by simply adding a constant to every payoff so that the table is nonnegative, computing the strategies and then subtracting the constant from the computed optimal payoff.

- Let’s set up all three examples as LP problems, both explicitly and in matrix form, and solve them with Matlab to determine optimal strategies for each game. Check requirements of *linprog* first.
Linear Programming to the Rescue:

We can solve either problem of the previous frame with linear programming tools as follows.

- **Key fact**: Both problems have a solution with common payoff p. In fact, they solve the linear programming programs $\max p$ subject to constraints $x^TA \geq p1_{1,n}$, $x \geq 0$, $x^T1_{1,m} = 1$, for player 1 and $\min p$ subject to constraints $Ay \leq p1_{1,m}$, $y \geq 0$, $1_{1,n}y = 1$, for player 2. These linear programming problems are *dual* to each other.

- **Practical tip**: We can also insure that $p \geq 0$ by simply adding a constant to every payoff so that the table is nonnegative, computing the strategies and then subtracting the constant from the computed optimal payoff.

Let’s set up all three examples as LP problems, both explicitly and in matrix form, and solve them with Matlab to determine optimal strategies for each game. Check requirements of *linprog* first.
Linear Programming to the Rescue:

We can solve either problem of the previous frame with linear
programming tools as follows.

- **Key fact**: Both problems have a solution with common payoff p. In fact, they solve the linear programming programs max p subject to constraints $x^T A \geq p1_{1,n}$, $x \geq 0$, $x^T 1_{m,1} = 1$, for player 1 and min p subject to constraints $Ay \leq p1_{m,1}$, $y \geq 0$, $1_{1,n}y = 1$, for player 2. These linear programming problems are dual to each other.

- **Practical tip**: We can also insure that $p \geq 0$ by simply adding a constant to every payoff so that the table is nonnegative, computing the strategies and then subtracting the constant from the computed optimal payoff.

- Let’s set up all three examples as LP problems, both explicitly and in matrix form, and solve them with Matlab to determine optimal strategies for each game. Check requirements of `linprog` first.
The Original Model Problem:

Two companies compete for the bulk of a shared market for a certain product and plan to execute one of three strategies. Both marketing departments analyzed them and have arrived at essentially the same figures for outcomes.

- The three strategies are:
 - Better packaging.
 - An advertising campaign.
 - Slight price reduction.

- Suppose there is considerable uncertainty about the payoff in the case that both players make a slight reduction in price. How could we clearly illustrate the effect of changes in the payoff on the weight that one of the companies puts on this strategy?
A Sensitivity Analysis

The Original Model Problem:

Two companies compete for the bulk of a shared market for a certain product and plan to execute one of three strategies. Both marketing departments analyzed them and have arrived at essentially the same figures for outcomes.

- The three strategies are:
 - Better packaging.
 - An advertising campaign.
 - Slight price reduction.

- Suppose there is considerable uncertainty about the payoff in the case that both players make a slight reduction in price. How could we clearly illustrate the effect of changes in the payoff on the weight that one of the companies puts on this strategy?
A Sensitivity Analysis

The Original Model Problem:

Two companies compete for the bulk of a shared market for a certain product and plan to execute one of three strategies. Both marketing departments analyzed them and have arrived at essentially the same figures for outcomes.

- The three strategies are:
 - Better packaging.
 - An advertising campaign.
 - Slight price reduction.

- Suppose there is considerable uncertainty about the payoff in the case that both players make a slight reduction in price. How could we clearly illustrate the effect of changes in the payoff on the weight that one of the companies puts on this strategy?