
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
Chapter 8: Option Pricing by Monte Carlo Methods

JDEP 384H: Numerical Methods in Business

Instructor: Thomas Shores

Department of Mathematics

Lecture 23, April 10, 2007

110 Kaufmann Center

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
Chapter 8: Option Pricing by Monte Carlo Methods

Outline

1 Chapter 4: Numerical Integration: Deterministic and Monte

Carlo Methods

BT 4.1: Numerical Integration

BT 4.2: Monte Carlo Integration

BT 4.3: Generating Pseudorandom Variates

BT 4.4: Setting the Number of Replications

BT 4.5: Variance Reduction Techniques

2 Chapter 8: Option Pricing by Monte Carlo Methods

Section 8.1: Path Generation

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
Chapter 8: Option Pricing by Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration
BT 4.3: Generating Pseudorandom Variates
BT 4.4: Setting the Number of Replications
BT 4.5: Variance Reduction Techniques

Outline

1 Chapter 4: Numerical Integration: Deterministic and Monte

Carlo Methods

BT 4.1: Numerical Integration

BT 4.2: Monte Carlo Integration

BT 4.3: Generating Pseudorandom Variates

BT 4.4: Setting the Number of Replications

BT 4.5: Variance Reduction Techniques

2 Chapter 8: Option Pricing by Monte Carlo Methods

Section 8.1: Path Generation

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
Chapter 8: Option Pricing by Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration
BT 4.3: Generating Pseudorandom Variates
BT 4.4: Setting the Number of Replications
BT 4.5: Variance Reduction Techniques

Outline

1 Chapter 4: Numerical Integration: Deterministic and Monte

Carlo Methods

BT 4.1: Numerical Integration

BT 4.2: Monte Carlo Integration

BT 4.3: Generating Pseudorandom Variates

BT 4.4: Setting the Number of Replications

BT 4.5: Variance Reduction Techniques

2 Chapter 8: Option Pricing by Monte Carlo Methods

Section 8.1: Path Generation

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
Chapter 8: Option Pricing by Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration
BT 4.3: Generating Pseudorandom Variates
BT 4.4: Setting the Number of Replications
BT 4.5: Variance Reduction Techniques

Outline

1 Chapter 4: Numerical Integration: Deterministic and Monte

Carlo Methods

BT 4.1: Numerical Integration

BT 4.2: Monte Carlo Integration

BT 4.3: Generating Pseudorandom Variates

BT 4.4: Setting the Number of Replications

BT 4.5: Variance Reduction Techniques

2 Chapter 8: Option Pricing by Monte Carlo Methods

Section 8.1: Path Generation

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
Chapter 8: Option Pricing by Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration
BT 4.3: Generating Pseudorandom Variates
BT 4.4: Setting the Number of Replications
BT 4.5: Variance Reduction Techniques

Outline

1 Chapter 4: Numerical Integration: Deterministic and Monte

Carlo Methods

BT 4.1: Numerical Integration

BT 4.2: Monte Carlo Integration

BT 4.3: Generating Pseudorandom Variates

BT 4.4: Setting the Number of Replications

BT 4.5: Variance Reduction Techniques

2 Chapter 8: Option Pricing by Monte Carlo Methods

Section 8.1: Path Generation

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
Chapter 8: Option Pricing by Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration
BT 4.3: Generating Pseudorandom Variates
BT 4.4: Setting the Number of Replications
BT 4.5: Variance Reduction Techniques

Outline

1 Chapter 4: Numerical Integration: Deterministic and Monte

Carlo Methods

BT 4.1: Numerical Integration

BT 4.2: Monte Carlo Integration

BT 4.3: Generating Pseudorandom Variates

BT 4.4: Setting the Number of Replications

BT 4.5: Variance Reduction Techniques

2 Chapter 8: Option Pricing by Monte Carlo Methods

Section 8.1: Path Generation

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



Variance Reduction 1: Antithetic Variates

Basic Idea:

To estimate E [X ] = µ, select r.v.'s X1 and X2 with

the same distribution as X , but require that they be negatively

correlated. Then X and Y = (X1 + X2) /2 have the same

mean µ.

However, we have Var (Y ) is given by
Var(X1)+Var(X2)+2Cov(X1,X2)

4
= Var (X ) + 1

2
Cov (X1,X2).

Generate paired random samples
(
X

(i)
1

,X
(i)
2

)
, i = 1, . . . , n,

and obtain pair-averaged samples Y (i) =
(
X

(i)
1

+ X
(i)
2

)
/2.

The resulting sample variance is expected to be be smaller

than that of the random sample X
(i)
1

of X .

Hope this reduces the variance of the sample.

Practical pointer: If X = g (U) are supposed to be generated

by uniform U (0, 1) samples Ui , try X
(i)
1

= g (Ui ) and

X
(i)
2

= g (1− Ui ). IF g (u) is monotone increasing, this works!

Caution: without some restrictions, it can make things worse!

See Example 4.12.



Variance Reduction 1: Antithetic Variates

Basic Idea:

To estimate E [X ] = µ, select r.v.'s X1 and X2 with

the same distribution as X , but require that they be negatively

correlated. Then X and Y = (X1 + X2) /2 have the same

mean µ.

However, we have Var (Y ) is given by
Var(X1)+Var(X2)+2Cov(X1,X2)

4
= Var (X ) + 1

2
Cov (X1,X2).

Generate paired random samples
(
X

(i)
1

,X
(i)
2

)
, i = 1, . . . , n,

and obtain pair-averaged samples Y (i) =
(
X

(i)
1

+ X
(i)
2

)
/2.

The resulting sample variance is expected to be be smaller

than that of the random sample X
(i)
1

of X .

Hope this reduces the variance of the sample.

Practical pointer: If X = g (U) are supposed to be generated

by uniform U (0, 1) samples Ui , try X
(i)
1

= g (Ui ) and

X
(i)
2

= g (1− Ui ). IF g (u) is monotone increasing, this works!

Caution: without some restrictions, it can make things worse!

See Example 4.12.



Variance Reduction 1: Antithetic Variates

Basic Idea:

To estimate E [X ] = µ, select r.v.'s X1 and X2 with

the same distribution as X , but require that they be negatively

correlated. Then X and Y = (X1 + X2) /2 have the same

mean µ.

However, we have Var (Y ) is given by
Var(X1)+Var(X2)+2Cov(X1,X2)

4
= Var (X ) + 1

2
Cov (X1,X2).

Generate paired random samples
(
X

(i)
1

,X
(i)
2

)
, i = 1, . . . , n,

and obtain pair-averaged samples Y (i) =
(
X

(i)
1

+ X
(i)
2

)
/2.

The resulting sample variance is expected to be be smaller

than that of the random sample X
(i)
1

of X .

Hope this reduces the variance of the sample.

Practical pointer: If X = g (U) are supposed to be generated

by uniform U (0, 1) samples Ui , try X
(i)
1

= g (Ui ) and

X
(i)
2

= g (1− Ui ). IF g (u) is monotone increasing, this works!

Caution: without some restrictions, it can make things worse!

See Example 4.12.



Variance Reduction 1: Antithetic Variates

Basic Idea:

To estimate E [X ] = µ, select r.v.'s X1 and X2 with

the same distribution as X , but require that they be negatively

correlated. Then X and Y = (X1 + X2) /2 have the same

mean µ.

However, we have Var (Y ) is given by
Var(X1)+Var(X2)+2Cov(X1,X2)

4
= Var (X ) + 1

2
Cov (X1,X2).

Generate paired random samples
(
X

(i)
1

,X
(i)
2

)
, i = 1, . . . , n,

and obtain pair-averaged samples Y (i) =
(
X

(i)
1

+ X
(i)
2

)
/2.

The resulting sample variance is expected to be be smaller

than that of the random sample X
(i)
1

of X .

Hope this reduces the variance of the sample.

Practical pointer: If X = g (U) are supposed to be generated

by uniform U (0, 1) samples Ui , try X
(i)
1

= g (Ui ) and

X
(i)
2

= g (1− Ui ). IF g (u) is monotone increasing, this works!

Caution: without some restrictions, it can make things worse!

See Example 4.12.



Variance Reduction 1: Antithetic Variates

Basic Idea:

To estimate E [X ] = µ, select r.v.'s X1 and X2 with

the same distribution as X , but require that they be negatively

correlated. Then X and Y = (X1 + X2) /2 have the same

mean µ.

However, we have Var (Y ) is given by
Var(X1)+Var(X2)+2Cov(X1,X2)

4
= Var (X ) + 1

2
Cov (X1,X2).

Generate paired random samples
(
X

(i)
1

,X
(i)
2

)
, i = 1, . . . , n,

and obtain pair-averaged samples Y (i) =
(
X

(i)
1

+ X
(i)
2

)
/2.

The resulting sample variance is expected to be be smaller

than that of the random sample X
(i)
1

of X .

Hope this reduces the variance of the sample.

Practical pointer: If X = g (U) are supposed to be generated

by uniform U (0, 1) samples Ui , try X
(i)
1

= g (Ui ) and

X
(i)
2

= g (1− Ui ). IF g (u) is monotone increasing, this works!

Caution: without some restrictions, it can make things worse!

See Example 4.12.



Variance Reduction 1: Antithetic Variates

Basic Idea:

To estimate E [X ] = µ, select r.v.'s X1 and X2 with

the same distribution as X , but require that they be negatively

correlated. Then X and Y = (X1 + X2) /2 have the same

mean µ.

However, we have Var (Y ) is given by
Var(X1)+Var(X2)+2Cov(X1,X2)

4
= Var (X ) + 1

2
Cov (X1,X2).

Generate paired random samples
(
X

(i)
1

,X
(i)
2

)
, i = 1, . . . , n,

and obtain pair-averaged samples Y (i) =
(
X

(i)
1

+ X
(i)
2

)
/2.

The resulting sample variance is expected to be be smaller

than that of the random sample X
(i)
1

of X .

Hope this reduces the variance of the sample.

Practical pointer: If X = g (U) are supposed to be generated

by uniform U (0, 1) samples Ui , try X
(i)
1

= g (Ui ) and

X
(i)
2

= g (1− Ui ). IF g (u) is monotone increasing, this works!

Caution: without some restrictions, it can make things worse!

See Example 4.12.



Variance Reduction 1: Antithetic Variates

Basic Idea:

To estimate E [X ] = µ, select r.v.'s X1 and X2 with

the same distribution as X , but require that they be negatively

correlated. Then X and Y = (X1 + X2) /2 have the same

mean µ.

However, we have Var (Y ) is given by
Var(X1)+Var(X2)+2Cov(X1,X2)

4
= Var (X ) + 1

2
Cov (X1,X2).

Generate paired random samples
(
X

(i)
1

,X
(i)
2

)
, i = 1, . . . , n,

and obtain pair-averaged samples Y (i) =
(
X

(i)
1

+ X
(i)
2

)
/2.

The resulting sample variance is expected to be be smaller

than that of the random sample X
(i)
1

of X .

Hope this reduces the variance of the sample.

Practical pointer: If X = g (U) are supposed to be generated

by uniform U (0, 1) samples Ui , try X
(i)
1

= g (Ui ) and

X
(i)
2

= g (1− Ui ). IF g (u) is monotone increasing, this works!

Caution: without some restrictions, it can make things worse!

See Example 4.12.



Calculations

Returning to our Monte Carlo integration example, recall that to

bound the (absolute) error by γ with the con�dence 1− α, require

that z1−α/2
S(n)√

n
≤ γ (assuming normal distribution.) Experiment

with this Matlab code.
> mu = exp(1)-1

> rand('state',0)

> alpha = 0.05 % 95 percent confidence level

> zalpha = stdn_inv(1-alpha/2)

> n = 200

> U = rand(n,1);

> X1 = exp(U);

> X2 = exp(1-U);

> Xn = 0.5*(X1+X2);

> [smplmu,smplstdv,muci,] = norm_fit(X1,alpha)

> abs(mu-smplmu), gmma = zalpha*sqrt(smplstdv/n)

> [smplmu,smplstdv,muci] = norm_fit(X2,alpha)

> abs(mu-smplmu), gmma = zalpha*sqrt(smplstdv/n)

> [smplmu,smplstdv,muci] = norm_fit(Xn,alpha)

> abs(mu-smplmu), gmma = zalpha*sqrt(smplstdv/n)



Variance Reduction 2: Control Variates

Basic Idea:

To estimate E [X ] = µ:

Find a random variable C , with known mean µC and form r.v.

XC = X + β (C − µ).

Have E [XC ] = E [X ] = µ.

Have Var ([XC ]) = Var (X ) + β2 Var (C ) + 2β Cov (X ,C ) .

So if 2β Cov (X ,C ) + β2 Var (C ) < 0, we get reduction with

optimum at β = β∗ = −Cov (Y ,C ) /Var (C ) (why?) , with

variance
(
1− ρ2 (X ,C )

)
Var (X ). In practice, we estimate β∗

experimentally.



Variance Reduction 2: Control Variates

Basic Idea:

To estimate E [X ] = µ:

Find a random variable C , with known mean µC and form r.v.

XC = X + β (C − µ).

Have E [XC ] = E [X ] = µ.

Have Var ([XC ]) = Var (X ) + β2 Var (C ) + 2β Cov (X ,C ) .

So if 2β Cov (X ,C ) + β2 Var (C ) < 0, we get reduction with

optimum at β = β∗ = −Cov (Y ,C ) /Var (C ) (why?) , with

variance
(
1− ρ2 (X ,C )

)
Var (X ). In practice, we estimate β∗

experimentally.



Variance Reduction 2: Control Variates

Basic Idea:

To estimate E [X ] = µ:

Find a random variable C , with known mean µC and form r.v.

XC = X + β (C − µ).

Have E [XC ] = E [X ] = µ.

Have Var ([XC ]) = Var (X ) + β2 Var (C ) + 2β Cov (X ,C ) .

So if 2β Cov (X ,C ) + β2 Var (C ) < 0, we get reduction with

optimum at β = β∗ = −Cov (Y ,C ) /Var (C ) (why?) , with

variance
(
1− ρ2 (X ,C )

)
Var (X ). In practice, we estimate β∗

experimentally.



Variance Reduction 2: Control Variates

Basic Idea:

To estimate E [X ] = µ:

Find a random variable C , with known mean µC and form r.v.

XC = X + β (C − µ).

Have E [XC ] = E [X ] = µ.

Have Var ([XC ]) = Var (X ) + β2 Var (C ) + 2β Cov (X ,C ) .

So if 2β Cov (X ,C ) + β2 Var (C ) < 0, we get reduction with

optimum at β = β∗ = −Cov (Y ,C ) /Var (C ) (why?) , with

variance
(
1− ρ2 (X ,C )

)
Var (X ). In practice, we estimate β∗

experimentally.



Variance Reduction 2: Control Variates

Basic Idea:

To estimate E [X ] = µ:

Find a random variable C , with known mean µC and form r.v.

XC = X + β (C − µ).

Have E [XC ] = E [X ] = µ.

Have Var ([XC ]) = Var (X ) + β2 Var (C ) + 2β Cov (X ,C ) .

So if 2β Cov (X ,C ) + β2 Var (C ) < 0, we get reduction with

optimum at β = β∗ = −Cov (Y ,C ) /Var (C ) (why?) , with

variance
(
1− ρ2 (X ,C )

)
Var (X ). In practice, we estimate β∗

experimentally.



Calculations

Returning to our Monte Carlo integration example, �nd a bound γ
for the (absolute) error by γ with the con�dence 1− α. This
Matlab code uses a linear approximation as control variate.
> mu = exp(1)-1

> rand('state',0)

> alpha = 0.05 % 95 percent confidence level

> zalpha = stdn_inv(1 - alpha/2)

> n = 100

> Un = rand(n,1);

> Xn = exp(Un);

> Cn = 1+(exp(1)-1)*Un; % Control variate

> muC = 1+(exp(1)-1)*0.5 % Expected value of C

> S = -cov([Cn,Xn]); % get covariance matrix

> bta = S(2,1)/S(2,2) % guess at optimum beta

> XC = Xn + bta*(Cn - muC);

> [smplmu,smplstdv,muci] = norm_fit(Xn,alpha)

> abs(mu-smplmu), gmma = zalpha*sqrt(smplstdv/n)

> [smplmu,smplstdv,muci] = norm_fit(XC,alpha)

> abs(mu-smplmu), gmma = zalpha*sqrt(smplstdv/n)



Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
Chapter 8: Option Pricing by Monte Carlo Methods

Section 8.1: Path Generation

Outline

1 Chapter 4: Numerical Integration: Deterministic and Monte

Carlo Methods

BT 4.1: Numerical Integration

BT 4.2: Monte Carlo Integration

BT 4.3: Generating Pseudorandom Variates

BT 4.4: Setting the Number of Replications

BT 4.5: Variance Reduction Techniques

2 Chapter 8: Option Pricing by Monte Carlo Methods

Section 8.1: Path Generation

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



Path Generation (Asset Dynamics)

Basic Idea:

Given an Ito stochastic di�erential equation

dSt = a (St , t) dt + b (St , t) dWt , how do we model a path of the

underlying stochastic process S (t)?

Simple discretization might lead to what we used in Exercise

3.5 for geometric Brownian motion dS = µS δt + σS dX :

∆S = Sk+1 − Sk ≈ µSk δt + σSk dX , where Sk = S(tk).

But this makes the random variable Sk+1 normally distributed,

given Sk , which is wrong! (Why?)

Reason: we saw in the ProbStatLectures section on stochastic

integrals that we can actually solve for S and obtain

S (t) = S (0) eνt+σ
√
t·z , so that with a little work we get

Sk+1 = Ske
ν δt+σ

√
δt·z , and Sk+1 is lognormally distributed,

given Sk . This gives a better strategy for simulating paths.



Path Generation (Asset Dynamics)

Basic Idea:

Given an Ito stochastic di�erential equation

dSt = a (St , t) dt + b (St , t) dWt , how do we model a path of the

underlying stochastic process S (t)?

Simple discretization might lead to what we used in Exercise

3.5 for geometric Brownian motion dS = µS δt + σS dX :

∆S = Sk+1 − Sk ≈ µSk δt + σSk dX , where Sk = S(tk).

But this makes the random variable Sk+1 normally distributed,

given Sk , which is wrong! (Why?)

Reason: we saw in the ProbStatLectures section on stochastic

integrals that we can actually solve for S and obtain

S (t) = S (0) eνt+σ
√
t·z , so that with a little work we get

Sk+1 = Ske
ν δt+σ

√
δt·z , and Sk+1 is lognormally distributed,

given Sk . This gives a better strategy for simulating paths.



Path Generation (Asset Dynamics)

Basic Idea:

Given an Ito stochastic di�erential equation

dSt = a (St , t) dt + b (St , t) dWt , how do we model a path of the

underlying stochastic process S (t)?

Simple discretization might lead to what we used in Exercise

3.5 for geometric Brownian motion dS = µS δt + σS dX :

∆S = Sk+1 − Sk ≈ µSk δt + σSk dX , where Sk = S(tk).

But this makes the random variable Sk+1 normally distributed,

given Sk , which is wrong! (Why?)

Reason: we saw in the ProbStatLectures section on stochastic

integrals that we can actually solve for S and obtain

S (t) = S (0) eνt+σ
√
t·z , so that with a little work we get

Sk+1 = Ske
ν δt+σ

√
δt·z , and Sk+1 is lognormally distributed,

given Sk . This gives a better strategy for simulating paths.



Path Generation (Asset Dynamics)

Basic Idea:

Given an Ito stochastic di�erential equation

dSt = a (St , t) dt + b (St , t) dWt , how do we model a path of the

underlying stochastic process S (t)?

Simple discretization might lead to what we used in Exercise

3.5 for geometric Brownian motion dS = µS δt + σS dX :

∆S = Sk+1 − Sk ≈ µSk δt + σSk dX , where Sk = S(tk).

But this makes the random variable Sk+1 normally distributed,

given Sk , which is wrong! (Why?)

Reason: we saw in the ProbStatLectures section on stochastic

integrals that we can actually solve for S and obtain

S (t) = S (0) eνt+σ
√
t·z , so that with a little work we get

Sk+1 = Ske
ν δt+σ

√
δt·z , and Sk+1 is lognormally distributed,

given Sk . This gives a better strategy for simulating paths.



Some Path Calculations

> mu = 0.1, sigma = 0.3, S0 = 100

> randn('state',0)

> nsteps = 52, T=1, dt = T/nsteps, nreps = 100

> S = zeros(nsteps+1,1); S(1) = S0;

> S2 = zeros(nreps,1);

> truemean = S(1)*exp(mu*T) % according to p. 99

> truestdv = sqrt(exp(2*(log(S(1))+(mu-sigma^2/2)*T) + ...

> sigma*sqrt(T))*(exp(sigma^2*T)-1)) % according to p.

632

> for j = 1:nreps

> for k = 1:nsteps, S(k+1) = S(k)*(1 + mu*dt + ...

> sigma*sqrt(dt)*randn()); end

> S2(j) = S(25);

> end % store up results at 1 year

> [smplmu,smplstdv,muci] = norm_fit(S2,alpha)

> A = AssetPath(S0,mu,sigma,T,nsteps,nreps);

> [smplmu,smplstdv,muci] = norm_fit(A(:,nsteps+1),alpha)



European Call with Simple Monte Carlo

Basic Idea:

If r is the risk-free interest rate and option price f0 at time

t = 0 is risk-free with price fT at time t = T , then the value

of f0 should be the discounted expected payo� f = e−rTE [fT ]
under a risk-neutral probability measure.

Of course, fT is a r.v. But the drift for this asset should be the

risk-free rate r . So all we have to do is average the payo�s

over various stock price paths to time T , then discount the

average to obtain an approximation for f0.

For example, with a European call, the payo� curve gives

fT = max
{
0, S0e

(r−σ2/2))T+σ
√
Tz − K

}
where K is the strike price. So we need the �nal value of

random walks of stock prices ST = S0e
(r−σ2/2))T+σ

√
Tz .



European Call with Simple Monte Carlo

Basic Idea:

If r is the risk-free interest rate and option price f0 at time

t = 0 is risk-free with price fT at time t = T , then the value

of f0 should be the discounted expected payo� f = e−rTE [fT ]
under a risk-neutral probability measure.

Of course, fT is a r.v. But the drift for this asset should be the

risk-free rate r . So all we have to do is average the payo�s

over various stock price paths to time T , then discount the

average to obtain an approximation for f0.

For example, with a European call, the payo� curve gives

fT = max
{
0, S0e

(r−σ2/2))T+σ
√
Tz − K

}
where K is the strike price. So we need the �nal value of

random walks of stock prices ST = S0e
(r−σ2/2))T+σ

√
Tz .



European Call with Simple Monte Carlo

Basic Idea:

If r is the risk-free interest rate and option price f0 at time

t = 0 is risk-free with price fT at time t = T , then the value

of f0 should be the discounted expected payo� f = e−rTE [fT ]
under a risk-neutral probability measure.

Of course, fT is a r.v. But the drift for this asset should be the

risk-free rate r . So all we have to do is average the payo�s

over various stock price paths to time T , then discount the

average to obtain an approximation for f0.

For example, with a European call, the payo� curve gives

fT = max
{
0, S0e

(r−σ2/2))T+σ
√
Tz − K

}
where K is the strike price. So we need the �nal value of

random walks of stock prices ST = S0e
(r−σ2/2))T+σ

√
Tz .



European Call with Simple Monte Carlo

Basic Idea:

If r is the risk-free interest rate and option price f0 at time

t = 0 is risk-free with price fT at time t = T , then the value

of f0 should be the discounted expected payo� f = e−rTE [fT ]
under a risk-neutral probability measure.

Of course, fT is a r.v. But the drift for this asset should be the

risk-free rate r . So all we have to do is average the payo�s

over various stock price paths to time T , then discount the

average to obtain an approximation for f0.

For example, with a European call, the payo� curve gives

fT = max
{
0, S0e

(r−σ2/2))T+σ
√
Tz − K

}
where K is the strike price. So we need the �nal value of

random walks of stock prices ST = S0e
(r−σ2/2))T+σ

√
Tz .



Example Calculations

Example Calculations:

Use Monte Carlo and antithetic variates generated by z and −z to

estimate the value of a European call with same data as in previous

example and strike price of K = 110. Take risk-free interest rate to

be r = 0.06.

> alpha = 0.05, randn('state',0)

> sigma = 0.3, S0 = 100, r = 0.06, K = 110

> nsteps = 52, T=1, dt = T/nsteps, nreps = 100

> nuT = (mu-0.5*sigma^2)*T;

> siT = sigma*sqrt(T);

> Veps = randn(nreps,1);

> payoff1 = max(0,S0*exp(nuT+siT*Veps) - K);

> payoff2 = max(0,S0*exp(nuT+siT*(-Veps)) - K);

> prices = exp(-r*T)*0.5*(payoff1 + payoff2);

> trueprice = bseurcall(S0,K,r,T,0,sigma,0)

> [price, V, CI] = norm_fit(prices) % compare

> [price, V, CI] = norm_fit(exp(-r*T)*payoff1) % compare


	Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
	BT 4.1: Numerical Integration
	BT 4.2: Monte Carlo Integration
	BT 4.3: Generating Pseudorandom Variates
	BT 4.4: Setting the Number of Replications
	BT 4.5: Variance Reduction Techniques

	Chapter 8: Option Pricing by Monte Carlo Methods
	Section 8.1: Path Generation


