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Variance Reduction 1: Antithetic Variates

To estimate E [X] = p, select r.v.’s X; and X3 with

@ the same distribution as X, but require that they be negatively
correlated. Then X and Y = (X1 + X2) /2 have the same
mean .

However, we have Var (Y) is given by
Var(X1)+Var(Xi)+2 COV(Xl ,Xg) — Var (X) + % COV (X]_, X2)

Generate paired random samples (Xl(i),Xz(i)> ,i=1,.

and obtain pair-averaged samples Y() = (X( —i—X( )/2
The resulting sample variance is expected to be be smaller
than that of the random sample Xl(') of X.

Hope this reduces the variance of the sample.

Practical pointer: If X = g (U) are supposed to be generated
by uniform U (0,1) samples U; , try Xl(') =g (U;) and

Xg(') =g (1 — U;). IF g(u) is monotone increasing. this-works!




Calculations

Returning to our Monte Carlo integration example, recall that to
bound the (absolute) error by v with the confidence 1 — «, require

S(n)

that z;_, /»> < (assuming normal distribution.) Experiment

n —

with this Matlab code.

V V V V V V V V V V V V V V.YV

mu = exp(1)-1

rand(’state?,0)

alpha = 0.05 % 95 percent confidence level
zalpha = stdn_inv(1l-alpha/2)

n = 200

U = rand(n,1);

X1 = exp(U);

X2 = exp(1-U);

Xn = 0.5%x(X1+X2);

[smplmu,smplstdv,muci,] = norm_fit(X1,alpha)
abs (mu-smplmu), gmma = zalpha*sqrt(smplstdv/n)
[smplmu,smplstdv,muci] = norm_fit(X2,alpha)
abs (mu-smplmu), gmma = zalpha*sqrt(smplstdv/n)
[smplmu,smplstdv,muci] = norm_fit(Xn,alpha)
abs (mu-smplmu), gmma = zalpha*sqrt(smplstdv/n)
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Variance Reduction 2: Control Variates

To estimate E [X] = u:

e Find a random variable C, with known mean pc and form r.v.
Xc=X+3(C—p).

e Have E[X¢] = E[X] = p.

o Have Var ([Xc]) = Var (X) + 32 Var (C) 4+ 23 Cov (X, C).

e So if 23 Cov (X, C) + 32 Var (C) < 0, we get reduction with
optimum at § = 8" = — Cov (Y, C) /Var(C) (why?) , with
variance (1 — p? (X, C)) Var (X). In practice, we estimate 3*
experimentally.




Calculations

Returning to our Monte Carlo integration example, find a bound ~
for the (absolute) error by v with the confidence 1 — . This
Matlab code uses a linear approximation as control variate.

> mu = exp(1)-1

> rand(’state’,0)

> alpha = 0.05 % 95 percent confidence level

> zalpha = stdn_inv(1 - alpha/2)

>n = 100

> Un = rand(n,1);

> Xn = exp(Un);

> Cn = 1+(exp(1)-1)*Un; % Control variate

> muC = 1+(exp(1)-1)*0.5 7% Expected value of C
> S8 = -cov([Cn,Xn]); % get covariance matrix

> bta = S(2,1)/5(2,2) % guess at optimum beta

> XC = Xn + bta*x(Cn - muC);

> [smplmu,smplstdv,muci] = norm_fit(Xn,alpha)

> abs(mu-smplmu), gmma = zalpha*sqrt(smplstdv/n)
> [smplmu,smplstdv,muci] = norm_fit(XC,alpha)

> abs(mu-smplmu), gmma = zalpha*sqrt(smplstdv/n)
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Path Generation (Asset Dynamics)

Basic Idea:

Given an lto stochastic differential equation
dS; = a(S¢, t) dt + b (S, t) dW;, how do we model a path of the
underlying stochastic process S (t)?

@ Simple discretization might lead to what we used in Exercise
3.5 for geometric Brownian motion dS = uS §t + oS dX:
AS = S5k11 — Sk ~ uSk 6t + oSk dX, where S5 = S(tk).

@ But this makes the random variable Sy 1 normally distributed,
given Sg, which is wrong! (Why?)

@ Reason: we saw in the ProbStatlectures section on stochastic
integrals that we can actually solve for S and obtain
S (t) = §(0) e"tt9Vt2 5o that with a little work we get
Sky1 = SpevdttoVitz and Sky1 is lognormally distributed,
given Si. This gives a better strategy for simulating paths.




Some Path Calculations

mu = 0.1, sigma = 0.3, SO = 100

randn(’state’,0)

nsteps = 52, T=1, dt = T/nsteps, nreps = 100

S = zeros(nsteps+1l,1); S(1) = S0;

S2 = zeros(ureps,1);

truemean = S(1)*exp(mu*T) % according to p. 99
truestdv = sqrt(exp(2*(log(S(1))+(mu-sigma~2/2)*T) + ...
sigma*sqrt (T))*(exp(sigma~2*T)-1)) % according to p.
632

for j = l:nreps

for k = l:nsteps, S(k+1) = S(k)*(1 + muxdt + ...
sigma*sqrt(dt)*randn()); end

S2(j) = S(25);

end % store up results at 1 year
[smplmu,smplstdv,muci] = norm_fit(S2,alpha)

A = AssetPath(S0,mu,sigma,T,nsteps,nreps);
[smplmu,smplstdv,muci] = norm_fit(A(:,nsteps+1),alpha)

V V V V V V V V
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t = 0 is risk-free with price f1 at time t = T, then the value
of fy should be the discounted expected payoff f = e~T E [f1]
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European Call with Simple Monte Carlo

o If r is the risk-free interest rate and option price fy at time
t = 0 is risk-free with price f1 at time t = T, then the value
of fy should be the discounted expected payoff f = e~T E [f1]
under a risk-neutral probability measure.

o Of course, fr is a r.v. But the drift for this asset should be the
risk-free rate r. So all we have to do is average the payoffs
over various stock price paths to time T, then discount the
average to obtain an approximation for fy.

@ For example, with a European call, the payoff curve gives
fr = max {0, Soelr=0*/D)T+ovTz _ K}

where K is the strike price. So we need the final value of
_ Soe(r—02/2))T+o\/?z.

random walks of stock prices St




Example Calculations

Example Calculations:

Use Monte Carlo and antithetic variates generated by z and —z to
estimate the value of a European call with same data as in previous
example and strike price of K = 110. Take risk-free interest rate to
be r = 0.06.

> alpha = 0.05, randn(’state’,0)

> sigma = 0.3, SO = 100, r = 0.06, K = 110

> nsteps = 52, T=1, dt = T/nsteps, nreps = 100
> nuT = (mu-0.5*sigma~2)*T;

> siT = sigma*sqrt(T);

> Veps = randn(nreps,1);

> payoffl = max(0,SOxexp(nuT+siT*Veps) - K);

> payoff2 = max(0,S0*exp(nuT+siT*(-Veps)) - K);
> prices = exp(-r*T)*0.5*(payoffl + payoff2);

> trueprice = bseurcall(S0,K,r,T,0,sigma,0)

> [price, V, CI] = norm_fit(prices) % compare

> [price, V, CI] = norm_fit(exp(-r*T)*payoffl) ¥ compare
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