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Setting Accuracy

Problem:

We estimate a mean by a sample mean X̄ (n) = 1

n

∑
n

i=1
Xi

approximating true mean µ and variance by sample variance

S2 (n) = 1

n−1
∑

n

i=1

[
Xi − X̄ (n)

]2
approximating true variance σ2.

We know that
∣∣X̄ (n)− µ

∣∣ ≤ z1−α/2
σ√
n
≈ z1−α/2

S (n)√
n

at the

(1− α) con�dence level. (See Lecture 6.)

So, to bound the error by β with the same con�dence, require

that z1−α/2
S(n)√

n
≤ β.

A little calculation shows that to bound the relative error by β,

require that
(
z1−α/2

S(n)√
n

)
/

∣∣X̄ (n)
∣∣ ≤ β/ (1 + β)

These may require large n, which could be a problem. (See

what β = 0.1 entails.) Possible solution: reduce variance of

sample.
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Variance Reduction 1: Antithetic Variates

Basic Idea:

To estimate E [X ] = µ:

Generate paired r.v.'s
(
X

(i)
1

,X
(i)
2

)
, i = 1, . . . , n with

horizontal independence, but not necessarily vertical

independence.

Construct pairs so that X
(i)
1

,X
(i)
2

are negatively correlated.

Use pair-averaged samples X (i) =
(
X

(i)
1

+ X
(i)
2

)
/2. Reason:

Var
(
X̄ (n)

)
=

Var
(
X

(i)
1

)
+ Var

(
X

(i)
2

)
+ 2Cov

(
X

(i)
1

,X
(i)
2

)
4n

Hope this reduces the variance of the sample.

Practical pointer: If X = g (U) are supposed to be generated

by uniform U (0, 1) samples Ui , try X
(i)
1

= g (Ui ) and

X
(i)
2

= g (1− Ui ). IF g (u) is monotone increasing, this works!

Caution: without some restrictions, it can make things worse!

See Example 4.12.
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Calculations

Returning to our Monte Carlo integration example, �nd the n that

will give absolute error at most 0.01 at the 95% con�dence level

using antithetic variates. Experiment with this Matlab code.

> mu = exp(1)-1

> rand('seed',0)

> alpha = 0.05 % 95 percent confidence level

> zalpha = stdn_inv(1 - alpha/2)

> n = 100

> U1 = rand(n,1);

> U2 = 1-U1;

> Xn = 0.5*(exp(U1)+exp(U2));

> Xbar = mean(Xn)

> sigma2 = var(Xn)

> bta = zalpha*sqrt(sigma2/n)



Variance Reduction 2: Control Variates

Basic Idea:

To estimate E [X ] = µ:

<+-> Find a random variable C , with known mean µC and

form r.v. XC = X + β (C − µ).

Have E [XC ] = E [X ] = µ.

Have Var ([XC ]) = Var (X ) + β2 Var (C ) + 2β Cov (X ,C ) .

So if 2β Cov (X ,C ) + β2 Var (C ) < 0, we get reduction with

optimum at β = β∗ = −Cov (Y ,C ) /Var (C ) (why?) , with

variance
(
1− ρ2 (X ,C )

)
Var (X ). In practice, we estimate β∗

experimentally.
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Calculations

Returning to our Monte Carlo integration example, �nd the n that

will give absolute error at most 0.01 at the 95% con�dence level.

Experiment with this Matlab code.

> mu = exp(1)-1

> rand('seed',0)

> alpha = 0.05 % 95 percent confidence level

> zalpha = stdn_inv(1 - alpha/2)

> n = 100

> Un = rand(n,1);

> Cn = 1+(exp(1)-1)*Un; % Control variate based on

linear approxn

> muC = 1+(exp(1)-1)*0.5 % Expected value of C

> btta = -0.5; % postive correlation, so negative beta

> Xn = exp(Un);

> XCbar = mean(Xn+btta*(Cn-muC))

> sigma2 = var(Xn+btta*(Cn-muC))

> bta = zalpha*sqrt(sigma2/n)
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