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Problem:

We estimate a mean by a sample mean X (n) = 137 | X;
approximating true mean y and variance by sample variance

= 2 L :
S%(n) = -3, [Xi — X (n)] approximating true variance 2.

n—1

o M at the
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(1 — «) confidence level. (See Lecture 6.)

e We know that ’)_((n) — | < z_ap

@ So, to bound the error by 3 with the same confidence, require

that Zl_a/z 5\(/%) S ﬂ

@ A little calculation shows that to bound the relative error by (3,

require that (zl—a/2 5\(/%)> /X (n)| <B/(L+B)

@ These may require large n, which could be a problem. (See
what § = 0.1 entails.) Possible solution: reduce variance of
sample.
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Variance Reduction 1: Antithetic Variates

To estimate E [X] =
@ Generate paired r.v.'s (Xl(i),Xz(i)> ,i=1,...,n with

horizontal independence, but not necessarily vertical
independence.

e Construct pairs so that Xl(i),X2(i) are negatively correlated.

o Use pair-averaged samples X(1) = (Xl(i) + X2(i)) /2. Reason:

Var (X{") + Var (xg")) +2Cov (xl("),xg"))
4n

Var (X (n)) =

Hope this reduces the variance of the sample.

Practical pointer: If X = g (U) are supposed to be generated
by uniform U (0, 1) samples U; , try Xl(') =g (U;) and
XQ(') =g (1 —U;). IF g (u) is monotone increasing, this works!
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Calculations

Returning to our Monte Carlo integration example, find the n that
will give absolute error at most 0.01 at the 95% confidence level
using antithetic variates. Experiment with this Matlab code.

Xbar = mean(Xn)
sigma2 = var(Xn)
bta = zalpha*sqrt(sigma2/n)

> mu = exp(1)-1

> rand(’seed’,0)

> alpha = 0.05 % 95 percent confidence level
> zalpha = stdn_inv(1l - alpha/2)
>n = 100

> Ul = rand(n,1);

> U2 = 1-U1;

> Xn = 0.5%(exp(Ul)+exp(U2));

>

>

>
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Variance Reduction 2: Control Variates

To estimate E [X] = u:

@ <+-> Find a random variable C, with known mean p¢ and
form rv. Xe =X+ 6(C — p).

e Have E [X¢] = E[X] = p.

o Have Var ([Xc]) = Var (X) + 32 Var (C) 4+ 23 Cov (X, C).

e So if 23 Cov (X, C) + 32 Var (C) < 0, we get reduction with
optimum at § = 8" = — Cov (Y, C) /Var(C) (why?) , with
variance (1 — p? (X, C)) Var (X). In practice, we estimate 3*
experimentally.




Calculations

Returning to our Monte Carlo integration example, find the n that
will give absolute error at most 0.01 at the 95% confidence level.
Experiment with this Matlab code.
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mu = exp(1)-1

rand(’seed’,0)

alpha = 0.05 % 95 percent confidence level
zalpha = stdn_inv(1l - alpha/2)

n = 100

Un = rand(n,1);

Cn = 1+(exp(1)-1)*Un; % Control variate based on

linear approxn

V V V V VvV V

muC = 1+(exp(1)-1)%0.5 % Expected value of C

btta = -0.5; % postive correlation, so negative beta
Xn = exp(Un);

XCbar = mean(Xn+btta*(Cn-muC))

sigma2 = var(Xntbtta*(Cn-muC))

bta = zalpha*sqrt(sigma2/n)
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