Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

Instructor: Thomas Shores
Department of Mathematics

Lecture 22, April 5, 2007
110 Kaufmann Center
1. Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
 - BT 4.1: Numerical Integration
 - BT 4.2: Monte Carlo Integration
 - BT 4.3: Generating Pseudorandom Variates
 - BT 4.4: Setting the Number of Replications
 - BT 4.5: Variance Reduction Techniques
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

- BT 4.1: Numerical Integration
- BT 4.2: Monte Carlo Integration
- BT 4.3: Generating Pseudorandom Variates
- BT 4.4: Setting the Number of Replications
- BT 4.5: Variance Reduction Techniques
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

- BT 4.1: Numerical Integration
- BT 4.2: Monte Carlo Integration
- BT 4.3: Generating Pseudorandom Variates
- BT 4.4: Setting the Number of Replications
- BT 4.5: Variance Reduction Techniques
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration
BT 4.3: Generating Pseudorandom Variates
BT 4.4: Setting the Number of Replications
BT 4.5: Variance Reduction Techniques
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

- BT 4.1: Numerical Integration
- BT 4.2: Monte Carlo Integration
- BT 4.3: Generating Pseudorandom Variates
- BT 4.4: Setting the Number of Replications
- BT 4.5: Variance Reduction Techniques

Outline

1. Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
 - BT 4.1: Numerical Integration
 - BT 4.2: Monte Carlo Integration
 - BT 4.3: Generating Pseudorandom Variates
 - BT 4.4: Setting the Number of Replications
 - BT 4.5: Variance Reduction Techniques
Problem:

We estimate a mean by a sample mean \(\bar{X} (n) = \frac{1}{n} \sum_{i=1}^{n} X_i \) approximating true mean \(\mu \) and variance by sample variance \(S^2 (n) = \frac{1}{n-1} \sum_{i=1}^{n} [X_i - \bar{X} (n)]^2 \) approximating true variance \(\sigma^2 \).

- We know that \(|\bar{X} (n) - \mu| \leq z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \approx z_{1-\alpha/2} \frac{S (n)}{\sqrt{n}} \) at the \((1 - \alpha)\) confidence level. (See Lecture 6.)

- So, to bound the error by \(\beta \) with the same confidence, require that \(z_{1-\alpha/2} \frac{S(n)}{\sqrt{n}} \leq \beta \).

- A little calculation shows that to bound the relative error by \(\beta \), require that \(\left(z_{1-\alpha/2} \frac{S(n)}{\sqrt{n}} \right) / |\bar{X} (n)| \leq \beta / (1 + \beta) \)

- These may require large \(n \), which could be a problem. (See what \(\beta = 0.1 \) entails.) Possible solution: reduce variance of sample.
We estimate a mean by a sample mean \(\bar{X}(n) = \frac{1}{n} \sum_{i=1}^{n} X_i \) approximating true mean \(\mu \) and variance by sample variance
\(S^2(n) = \frac{1}{n-1} \sum_{i=1}^{n} [X_i - \bar{X}(n)]^2 \) approximating true variance \(\sigma^2 \).

- We know that \(|\bar{X}(n) - \mu| \leq z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \approx z_{1-\alpha/2} \frac{S(n)}{\sqrt{n}} \) at the
 (1 - \(\alpha \)) confidence level. (See Lecture 6.)

- So, to bound the error by \(\beta \) with the same confidence, require that
 \(z_{1-\alpha/2} \frac{S(n)}{\sqrt{n}} \leq \beta \).

- A little calculation shows that to bound the relative error by \(\beta \), require that
 \(\left(z_{1-\alpha/2} \frac{S(n)}{\sqrt{n}} \right) / |\bar{X}(n)| \leq \beta / (1 + \beta) \)

- These may require large \(n \), which could be a problem. (See what \(\beta = 0.1 \) entails.) Possible solution: reduce variance of sample.
Problem:

We estimate a mean by a sample mean $\bar{X} (n) = \frac{1}{n} \sum_{i=1}^{n} X_i$ approximating true mean μ and variance by sample variance $S^2 (n) = \frac{1}{n-1} \sum_{i=1}^{n} [X_i - \bar{X} (n)]^2$ approximating true variance σ^2.

- We know that $|\bar{X} (n) - \mu| \leq z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \approx z_{1-\alpha/2} \frac{S (n)}{\sqrt{n}}$ at the $(1 - \alpha)$ confidence level. (See Lecture 6.)

- So, to bound the error by β with the same confidence, require that $z_{1-\alpha/2} \frac{S(n)}{\sqrt{n}} \leq \beta$.

- A little calculation shows that to bound the relative error by β, require that $\left(z_{1-\alpha/2} \frac{S(n)}{\sqrt{n}} \right) / |\bar{X} (n)| \leq \beta / (1 + \beta)$

- These may require large n, which could be a problem. (See what $\beta = 0.1$ entails.) Possible solution: reduce variance of sample.
We estimate a mean by a sample mean $\bar{X}(n) = \frac{1}{n} \sum_{i=1}^{n} X_i$ approximating true mean μ and variance by sample variance $S^2(n) = \frac{1}{n-1} \sum_{i=1}^{n} [X_i - \bar{X}(n)]^2$ approximating true variance σ^2.

- We know that $|\bar{X}(n) - \mu| \leq z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \approx z_{1-\alpha/2} \frac{S(n)}{\sqrt{n}}$ at the $(1-\alpha)$ confidence level. (See Lecture 6.)

- So, to bound the error by β with the same confidence, require that $z_{1-\alpha/2} \frac{S(n)}{\sqrt{n}} \leq \beta$.

- A little calculation shows that to bound the relative error by β, require that $\left(z_{1-\alpha/2} \frac{S(n)}{\sqrt{n}} \right) / |\bar{X}(n)| \leq \beta / (1 + \beta)$

- These may require large n, which could be a problem. (See what $\beta = 0.1$ entails.) Possible solution: reduce variance of sample.
Setting Accuracy

Problem:

We estimate a mean by a sample mean \(\bar{X} (n) = \frac{1}{n} \sum_{i=1}^{n} X_i \) approximating true mean \(\mu \) and variance by sample variance \(S^2 (n) = \frac{1}{n-1} \sum_{i=1}^{n} [X_i - \bar{X} (n)]^2 \) approximating true variance \(\sigma^2 \).

- We know that \(|\bar{X} (n) - \mu| \leq z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \approx z_{1-\alpha/2} \frac{S (n)}{\sqrt{n}} \) at the \((1 - \alpha) \) confidence level. (See Lecture 6.)

- So, to bound the error by \(\beta \) with the same confidence, require that \(z_{1-\alpha/2} \frac{S(n)}{\sqrt{n}} \leq \beta \).

- A little calculation shows that to bound the relative error by \(\beta \), require that \(\left(z_{1-\alpha/2} \frac{S(n)}{\sqrt{n}} \right) / |\bar{X} (n)| \leq \beta / (1 + \beta) \)

- These may require large \(n \), which could be a problem. (See what \(\beta = 0.1 \) entails.) Possible solution: reduce variance of sample.
Outline

Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

- BT 4.1: Numerical Integration
- BT 4.2: Monte Carlo Integration
- BT 4.3: Generating Pseudorandom Variates
- BT 4.4: Setting the Number of Replications
- BT 4.5: Variance Reduction Techniques
Variance Reduction 1: Antithetic Variates

Basic Idea:
To estimate $E[X] = \mu$:

- Generate paired r.v.’s $(X_1^{(i)}, X_2^{(i)})$, $i = 1, \ldots, n$ with horizontal independence, but not necessarily vertical independence.
- Construct pairs so that $X_1^{(i)}, X_2^{(i)}$ are negatively correlated.
- Use pair-averaged samples $X^{(i)} = \left(X_1^{(i)} + X_2^{(i)} \right) / 2$. Reason:

$$\text{Var} \left(\frac{\bar{X}(n)}{2} \right) = \frac{\text{Var} \left(X_1^{(i)} \right) + \text{Var} \left(X_2^{(i)} \right) + 2 \text{Cov} \left(X_1^{(i)}, X_2^{(i)} \right)}{4n}$$

- Hope this reduces the variance of the sample.
- Practical pointer: If $X = g(U)$ are supposed to be generated by uniform $U(0,1)$ samples U_i, try $X_1^{(i)} = g(U_i)$ and $X_2^{(i)} = g(1 - U_i)$. IF $g(u)$ is monotone increasing, this works! Caution: without some restrictions, it can make things worse!
Basic Idea:

To estimate $E[X] = \mu$:

- Generate paired r.v.'s $(X_1^{(i)}, X_2^{(i)}), i = 1, \ldots, n$ with horizontal independence, but not necessarily vertical independence.
- Construct pairs so that $X_1^{(i)}, X_2^{(i)}$ are negatively correlated.
- Use pair-averaged samples $X^{(i)} = \left(X_1^{(i)} + X_2^{(i)} \right) / 2$. Reason:

$$\text{Var} \left(\bar{X} (n) \right) = \frac{\text{Var} \left(X_1^{(i)} \right) + \text{Var} \left(X_2^{(i)} \right) + 2 \text{Cov} \left(X_1^{(i)}, X_2^{(i)} \right)}{4n}$$

- Hope this reduces the variance of the sample.
- Practical pointer: If $X = g(U)$ are supposed to be generated by uniform $U(0,1)$ samples U_i, try $X_1^{(i)} = g(U_i)$ and $X_2^{(i)} = g(1 - U_i)$. IF $g(u)$ is monotone increasing, this works! Caution: without some restrictions, it can make things worse!
Variance Reduction 1: Antithetic Variates

Basic Idea:

To estimate $E[X] = \mu$:

- Generate paired r.v.’s $(X_1^{(i)}, X_2^{(i)})$, $i = 1, \ldots, n$ with horizontal independence, but not necessarily vertical independence.

- Construct pairs so that $X_1^{(i)}, X_2^{(i)}$ are negatively correlated.

- Use pair-averaged samples $X^{(i)} = \left(X_1^{(i)} + X_2^{(i)} \right) / 2$. Reason:

$$\text{Var} \left(\bar{X} \right) = \frac{\text{Var} \left(X_1^{(i)} \right) + \text{Var} \left(X_2^{(i)} \right) + 2 \text{Cov} \left(X_1^{(i)}, X_2^{(i)} \right)}{4n}$$

- Hope this reduces the variance of the sample.

- Practical pointer: If $X = g(U)$ are supposed to be generated by uniform $U(0,1)$ samples U_i, try $X_1^{(i)} = g(U_i)$ and $X_2^{(i)} = g(1-U_i)$. If $g(u)$ is monotone increasing, this works! Caution: without some restrictions, it can make things worse.
Basic Idea:

To estimate $E[X] = \mu$:

- Generate paired r.v.'s $(X_1^{(i)}, X_2^{(i)})$, $i = 1, \ldots, n$ with horizontal independence, but not necessarily vertical independence.
- Construct pairs so that $X_1^{(i)}, X_2^{(i)}$ are negatively correlated.
- Use pair-averaged samples $X^{(i)} = \left(X_1^{(i)} + X_2^{(i)} \right) / 2$. Reason:

$$\text{Var} \left(\bar{X}(n) \right) = \frac{\text{Var} \left(X_1^{(i)} \right) + \text{Var} \left(X_2^{(i)} \right) + 2 \text{Cov} \left(X_1^{(i)}, X_2^{(i)} \right)}{4n}$$

- Hope this reduces the variance of the sample.
- Practical pointer: If $X = g(U)$ are supposed to be generated by uniform $U(0,1)$ samples U_i, try $X_1^{(i)} = g(U_i)$ and $X_2^{(i)} = g(1 - U_i)$. IF $g(u)$ is monotone increasing, this works! Caution: without some restrictions, it can make things worse!
Basic Idea:

To estimate $E[X] = \mu$:

- Generate paired r.v.'s $(X_1^{(i)}, X_2^{(i)})$, $i = 1, \ldots, n$ with horizontal independence, but not necessarily vertical independence.

- Construct pairs so that $X_1^{(i)}, X_2^{(i)}$ are negatively correlated.

- Use pair-averaged samples $X^{(i)} = \left(X_1^{(i)} + X_2^{(i)} \right) / 2$. Reason:

$$
\text{Var} \left(\bar{X} (n) \right) = \frac{\text{Var} \left(X_1^{(i)} \right) + \text{Var} \left(X_2^{(i)} \right) + 2 \text{Cov} \left(X_1^{(i)}, X_2^{(i)} \right)}{4n}
$$

- Hope this reduces the variance of the sample.

- Practical pointer: If $X = g(U)$ are supposed to be generated by uniform $U(0,1)$ samples U_i, try $X_1^{(i)} = g(U_i)$ and $X_2^{(i)} = g(1 - U_i)$. IF $g(u)$ is monotone increasing, this works! Caution: without some restrictions, it can make things worse!
Basic Idea:

To estimate $E[X] = \mu$:

- Generate paired r.v.’s $(X_1^{(i)}, X_2^{(i)})$, $i = 1, \ldots, n$ with horizontal independence, but not necessarily vertical independence.

- Construct pairs so that $X_1^{(i)}, X_2^{(i)}$ are negatively correlated.

- Use pair-averaged samples $X^{(i)} = \left(\frac{X_1^{(i)} + X_2^{(i)}}{2}\right)$. Reason:

$$\text{Var}(\bar{X} (n)) = \frac{\text{Var} \left(X_1^{(i)} \right) + \text{Var} \left(X_2^{(i)} \right) + 2 \text{Cov} \left(X_1^{(i)}, X_2^{(i)} \right)}{4n}$$

- Hope this reduces the variance of the sample.

- Practical pointer: If $X = g(U)$ are supposed to be generated by uniform $U(0,1)$ samples U_i, try $X_1^{(i)} = g(U_i)$ and $X_2^{(i)} = g(1 - U_i)$. IF $g(u)$ is monotone increasing, this works! Caution: without some restrictions, it can make things worse!
Returning to our Monte Carlo integration example, find the n that will give absolute error at most 0.01 at the 95% confidence level using antithetic variates. Experiment with this Matlab code.

```matlab
> mu = exp(1)-1
> rand('seed',0)
> alpha = 0.05 % 95 percent confidence level
> zalpha = stdn_inv(1 - alpha/2)
> n = 100
> U1 = rand(n,1);
> U2 = 1-U1;
> Xn = 0.5*(exp(U1)+exp(U2));
> Xbar = mean(Xn)
> sigma2 = var(Xn)
> bta = zalpha*sqrt(sigma2/n)
```
Basic Idea:

To estimate $E[X] = \mu$:

- \leftarrow Find a random variable C, with known mean μ_C and form r.v. $X_C = X + \beta (C - \mu)$.
- Have $E[X_C] = E[X] = \mu$.
- Have $\text{Var}([X_C]) = \text{Var}(X) + \beta^2 \text{Var}(C) + 2\beta \text{Cov}(X, C)$.
- So if $2\beta \text{Cov}(X, C) + \beta^2 \text{Var}(C) < 0$, we get reduction with optimum at $\beta = \beta^* = -\frac{\text{Cov}(Y, C)}{\text{Var}(C)}$ (why?), with variance $(1 - \rho^2 (X, C)) \text{Var}(X)$. In practice, we estimate β^* experimentally.
Basic Idea:

To estimate $E[X] = \mu$:

- Find a random variable C, with known mean μ_C and form r.v. $X_C = X + \beta (C - \mu)$.
- Have $E[X_C] = E[X] = \mu$.
- Have $\text{Var}([X_C]) = \text{Var}(X) + \beta^2 \text{Var}(C) + 2\beta \text{Cov}(X, C)$.
- So if $2\beta \text{Cov}(X, C) + \beta^2 \text{Var}(C) < 0$, we get reduction with optimum at $\beta = \beta^* = -\text{Cov}(Y, C) / \text{Var}(C)$ (why?), with variance $(1 - \rho^2(X, C)) \text{Var}(X)$. In practice, we estimate β^* experimentally.
Basic Idea:

To estimate $E[X] = \mu$:

- $<+->$ Find a random variable C, with known mean μ_C and form r.v. $X_C = X + \beta (C - \mu)$.
- Have $E[X_C] = E[X] = \mu$.
- Have $\text{Var}(X_C) = \text{Var}(X) + \beta^2 \text{Var}(C) + 2\beta \text{Cov}(X,C)$.
- So if $2\beta \text{Cov}(X,C) + \beta^2 \text{Var}(C) < 0$, we get reduction with optimum at $\beta = \beta^* = -\text{Cov}(Y,C)/\text{Var}(C)$ (why?), with variance $(1 - \rho^2(X,C)) \text{Var}(X)$. In practice, we estimate β^* experimentally.
Basic Idea:

To estimate $E[X] = \mu$:

- $<+->$ Find a random variable C, with known mean μ_C and form r.v. $X_C = X + \beta (C - \mu)$.
- Have $E[X_C] = E[X] = \mu$.
- Have $\text{Var}([X_C]) = \text{Var}(X) + \beta^2 \text{Var}(C) + 2\beta \text{Cov}(X, C)$.
- So if $2\beta \text{Cov}(X, C) + \beta^2 \text{Var}(C) < 0$, we get reduction with optimum at $\beta = \beta^* = -\text{Cov}(Y, C) / \text{Var}(C)$ (why?), with variance $(1 - \rho^2(X, C)) \text{Var}(X)$. In practice, we estimate β^* experimentally.
Basic Idea:

To estimate $E [X] = \mu$:

- `<+->` Find a random variable C, with known mean μ_C and form r.v. $X_C = X + \beta (C - \mu)$.
- Have $E [X_C] = E [X] = \mu$.
- Have $\text{Var} ([X_C]) = \text{Var} (X) + \beta^2 \text{Var} (C) + 2\beta \text{Cov} (X, C)$.
- So if $2\beta \text{Cov} (X, C) + \beta^2 \text{Var} (C) < 0$, we get reduction with optimum at $\beta = \beta^* = -\text{Cov} (Y, C) / \text{Var} (C)$ (why?), with variance $(1 - \rho^2 (X, C)) \text{Var} (X)$. In practice, we estimate β^* experimentally.
Returning to our Monte Carlo integration example, find the n that will give absolute error at most 0.01 at the 95% confidence level. Experiment with this Matlab code.

```matlab
> mu = exp(1)-1
> rand('seed',0)
> alpha = 0.05 % 95 percent confidence level
> zalpha = stdn_inv(1 - alpha/2)
> n = 100
> Un = rand(n,1);
> Cn = 1+(exp(1)-1)*Un; % Control variate based on
linear approxn
> muC = 1+(exp(1)-1)*0.5 % Expected value of C
> bttta = -0.5; % postive correlation, so negative beta
> Xn = exp(Un);
> XCbar = mean(Xn+bttta*(Cn-muC))
> sigma2 = var(Xn+bttta*(Cn-muC))
> bta = zalpha*sqrt(sigma2/n)
```