JDEP 384H: Numerical Methods in Business

Instructor: Thomas Shores Department of Mathematics

Lecture 22, April 5, 2007 110 Kaufmann Center

- Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
 - BT 4.1: Numerical Integration
 - BT 4.2: Monte Carlo Integration
 - BT 4.3: Generating Pseudorandom Variates
 - BT 4.4: Setting the Number of Replications
 - BT 4.5: Variance Reduction Techniques

BT 4.1: Numerical Integration BT 4.3: Generating Pseudorandom Variates

BT 4.5: Variance Reduction Techniques

- Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
 - BT 4.1: Numerical Integration
 - BT 4.2: Monte Carlo Integration
 - BT 4.3: Generating Pseudorandom Variates
 - BT 4.4: Setting the Number of Replications
 - BT 4.5: Variance Reduction Techniques

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration
BT 4.3: Generating Pseudorandom Variates

BT 4.5: Variance Reduction Techniques

- Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
 - BT 4.1: Numerical Integration
 - BT 4.2: Monte Carlo Integration
 - BT 4.3: Generating Pseudorandom Variates
 - BT 4.4: Setting the Number of Replications
 - BT 4.5: Variance Reduction Techniques

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration
BT 4.3: Generating Pseudorandom Variates

BT 4.5: Variance Reduction Techniques

- Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
 - BT 4.1: Numerical Integration
 - BT 4.2: Monte Carlo Integration
 - BT 4.3: Generating Pseudorandom Variates
 - BT 4.4: Setting the Number of Replications
 - BT 4.5: Variance Reduction Techniques

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration
BT 4.3: Generating Pseudorandom Variates
BT 4.4: Setting the Number of Replications
BT 4.5: Variance Reduction Techniques

- Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
 - BT 4.1: Numerical Integration
 - BT 4.2: Monte Carlo Integration
 - BT 4.3: Generating Pseudorandom Variates
 - BT 4.4: Setting the Number of Replications
 - BT 4.5: Variance Reduction Techniques

Problem:

- We know that $|\bar{X}(n) \mu| \le z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \approx z_{1-\alpha/2} \frac{S(n)}{\sqrt{n}}$ at the $(1-\alpha)$ confidence level. (See Lecture 6.)
- So, to bound the error by β with the same confidence, require that $z_{1-\alpha/2} \frac{S(n)}{\sqrt{n}} \leq \beta$.
- A little calculation shows that to bound the relative error by β , require that $\left(z_{1-\alpha/2}\frac{S(n)}{\sqrt{n}}\right)/\left|\bar{X}\left(n\right)\right| \leq \beta/\left(1+\beta\right)$
- These may require large n, which could be a problem. (See what $\beta=0.1$ entails.) Possible solution: reduce variance of sample.

Problem:

- We know that $\left| \bar{X} \left(n \right) \mu \right| \leq z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \approx z_{1-\alpha/2} \frac{S \left(n \right)}{\sqrt{n}}$ at the $(1-\alpha)$ confidence level. (See Lecture 6.)
- So, to bound the error by β with the same confidence, require that $z_{1-\alpha/2} \frac{S(n)}{\sqrt{n}} \leq \beta$.
- A little calculation shows that to bound the relative error by β , require that $\left(z_{1-\alpha/2}\frac{S(n)}{\sqrt{n}}\right)/\left|\bar{X}\left(n\right)\right|\leq\beta/\left(1+\beta\right)$
- These may require large n, which could be a problem. (See what $\beta=0.1$ entails.) Possible solution: reduce variance of sample.

Problem:

- We know that $\left| \bar{X} \left(n \right) \mu \right| \leq z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \approx z_{1-\alpha/2} \frac{S \left(n \right)}{\sqrt{n}}$ at the $(1-\alpha)$ confidence level. (See Lecture 6.)
- So, to bound the error by β with the same confidence, require that $z_{1-\alpha/2} \frac{s(n)}{\sqrt{n}} \leq \beta$.
- A little calculation shows that to bound the relative error by β , require that $\left(z_{1-\alpha/2}\frac{S(n)}{\sqrt{n}}\right)/\left|\bar{X}\left(n\right)\right| \leq \beta/\left(1+\beta\right)$
- These may require large n, which could be a problem. (See what $\beta=0.1$ entails.) Possible solution: reduce variance of sample.

Problem:

- We know that $\left| \bar{X} \left(n \right) \mu \right| \leq z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \approx z_{1-\alpha/2} \frac{S \left(n \right)}{\sqrt{n}}$ at the $(1-\alpha)$ confidence level. (See Lecture 6.)
- So, to bound the error by β with the same confidence, require that $z_{1-\alpha/2} \frac{s(n)}{\sqrt{n}} \leq \beta$.
- A little calculation shows that to bound the relative error by β , require that $\left(z_{1-\alpha/2}\frac{S(n)}{\sqrt{n}}\right)/\left|\bar{X}\left(n\right)\right|\leq\beta/\left(1+\beta\right)$
- These may require large n, which could be a problem. (See what $\beta=0.1$ entails.) Possible solution: reduce variance of sample.

Problem:

- We know that $\left| \bar{X} \left(n \right) \mu \right| \leq z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \approx z_{1-\alpha/2} \frac{S \left(n \right)}{\sqrt{n}}$ at the $(1-\alpha)$ confidence level. (See Lecture 6.)
- So, to bound the error by β with the same confidence, require that $z_{1-\alpha/2} \frac{s(n)}{\sqrt{n}} \leq \beta$.
- A little calculation shows that to bound the relative error by β , require that $\left(z_{1-\alpha/2}\frac{S(n)}{\sqrt{n}}\right)/\left|\bar{X}\left(n\right)\right|\leq\beta/\left(1+\beta\right)$
- These may require large n, which could be a problem. (See what $\beta=0.1$ entails.) Possible solution: reduce variance of sample.

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration
BT 4.3: Generating Pseudorandom Variates
BT 4.4: Setting the Number of Replications
BT 4.5: Variance Reduction Techniques

- Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
 - BT 4.1: Numerical Integration
 - BT 4.2: Monte Carlo Integration
 - BT 4.3: Generating Pseudorandom Variates
 - BT 4.4: Setting the Number of Replications
 - BT 4.5: Variance Reduction Techniques

Basic Idea:

To estimate $E[X] = \mu$:

- ullet Generate paired r.v.'s $\left(X_1^{(i)},X_2^{(i)}
 ight),\ i=1,\ldots,n$ with
- Construct pairs so that $X_1^{(i)}, X_2^{(i)}$ are negatively correlated.
- Use pair-averaged samples $X^{(i)} = \left(X_1^{(i)} + X_2^{(i)}\right)/2$. Reason:

$$\operatorname{Var}\left(\bar{X}\left(n\right)\right) = \frac{\operatorname{Var}\left(X_{1}^{\left(i\right)}\right) + \operatorname{Var}\left(X_{2}^{\left(i\right)}\right) + 2\operatorname{Cov}\left(X_{1}^{\left(i\right)}, X_{2}^{\left(i\right)}\right)}{4n}$$

- Hope this reduces the variance of the sample.
- Practical pointer: If X = g(U) are supposed to be generated

Basic Idea:

To estimate $E[X] = \mu$:

- Generate paired r.v.'s $\left(X_1^{(i)}, X_2^{(i)}\right)$, $i = 1, \ldots, n$ with horizontal independence, but not necessarily vertical independence.
- Construct pairs so that $X_1^{(i)}, X_2^{(i)}$ are negatively correlated.
- Use pair-averaged samples $X^{(i)} = \left(X_1^{(i)} + X_2^{(i)}\right)/2$. Reason:

$$\operatorname{Var}\left(\bar{X}\left(n\right)\right) = \frac{\operatorname{Var}\left(X_{1}^{\left(i\right)}\right) + \operatorname{Var}\left(X_{2}^{\left(i\right)}\right) + 2\operatorname{Cov}\left(X_{1}^{\left(i\right)}, X_{2}^{\left(i\right)}\right)}{4n}$$

- Hope this reduces the variance of the sample.
- Practical pointer: If X = g(U) are supposed to be generated by uniform U(0,1) samples U_i , try $X_1^{(i)} = g(U_i)$ and $X_1^{(i)} = g(1,U_i)$. If $g(U_i)$ is monotone increasing, this works

Basic Idea:

To estimate $E[X] = \mu$:

- Generate paired r.v.'s $\left(X_1^{(i)}, X_2^{(i)}\right)$, $i=1,\ldots,n$ with horizontal independence, but not necessarily vertical independence.
- Construct pairs so that $X_1^{(i)}, X_2^{(i)}$ are negatively correlated.
- Use pair-averaged samples $X^{(i)} = \left(X_1^{(i)} + X_2^{(i)}\right)/2$. Reason:

$$\operatorname{Var}\left(\bar{X}\left(n\right)\right) = \frac{\operatorname{Var}\left(X_{1}^{\left(i\right)}\right) + \operatorname{Var}\left(X_{2}^{\left(i\right)}\right) + 2\operatorname{Cov}\left(X_{1}^{\left(i\right)}, X_{2}^{\left(i\right)}\right)}{4n}$$

- Hope this reduces the variance of the sample.
- Practical pointer: If X = g(U) are supposed to be generated by uniform U(0,1) samples U_i , try $X_1^{(i)} = g(U_i)$ and $X_2^{(i)} = g(1-U_i)$ IF g(u) is monotone increasing this works!

Basic Idea:

To estimate $E[X] = \mu$:

- Generate paired r.v.'s $\left(X_1^{(i)}, X_2^{(i)}\right)$, $i = 1, \ldots, n$ with horizontal independence, but not necessarily vertical independence.
- Construct pairs so that $X_1^{(i)}, X_2^{(i)}$ are negatively correlated.
- Use pair-averaged samples $X^{(i)} = \left(X_1^{(i)} + X_2^{(i)}\right)/2$. Reason:

$$\mathsf{Var}\left(\bar{X}\left(n\right)\right) = \frac{\mathsf{Var}\left(X_{1}^{\left(i\right)}\right) + \mathsf{Var}\left(X_{2}^{\left(i\right)}\right) + 2\,\mathsf{Cov}\left(X_{1}^{\left(i\right)}, X_{2}^{\left(i\right)}\right)}{4\,n}$$

- Hope this reduces the variance of the sample.
- Practical pointer: If X = g(U) are supposed to be generated by uniform U(0,1) samples U_i , try $X_1^{(i)} = g(U_i)$ and $X_2^{(i)} = g(1 U_i)$. IF g(u) is monotone increasing, this works

Basic Idea:

To estimate $E[X] = \mu$:

- Generate paired r.v.'s $\left(X_1^{(i)}, X_2^{(i)}\right)$, $i = 1, \ldots, n$ with horizontal independence, but not necessarily vertical independence.
- Construct pairs so that $X_1^{(i)}, X_2^{(i)}$ are negatively correlated.
- Use pair-averaged samples $X^{(i)} = \left(X_1^{(i)} + X_2^{(i)}\right)/2$. Reason:

$$\operatorname{Var}\left(\bar{X}\left(n\right)\right) = \frac{\operatorname{Var}\left(X_{1}^{\left(i\right)}\right) + \operatorname{Var}\left(X_{2}^{\left(i\right)}\right) + 2\operatorname{Cov}\left(X_{1}^{\left(i\right)}, X_{2}^{\left(i\right)}\right)}{4n}$$

- Hope this reduces the variance of the sample.
- Practical pointer: If X = g(U) are supposed to be generated by uniform U(0,1) samples U_i , try $X_1^{(i)} = g(U_i)$ and $X_2^{(i)} = g(1 U_i)$. IF g(u) is monotone increasing, this works

Basic Idea:

To estimate $E[X] = \mu$:

- ullet Generate paired r.v.'s $\left(X_1^{(i)},X_2^{(i)}\right),\,i=1,\ldots,n$ with horizontal independence, but not necessarily vertical independence.
- Construct pairs so that $X_1^{(i)}, X_2^{(i)}$ are negatively correlated.
- Use pair-averaged samples $X^{(i)} = \left(X_1^{(i)} + X_2^{(i)}\right)/2$. Reason:

$$\operatorname{Var}\left(\bar{X}\left(n\right)\right) = \frac{\operatorname{Var}\left(X_{1}^{\left(i\right)}\right) + \operatorname{Var}\left(X_{2}^{\left(i\right)}\right) + 2\operatorname{Cov}\left(X_{1}^{\left(i\right)}, X_{2}^{\left(i\right)}\right)}{4n}$$

- Hope this reduces the variance of the sample.
- Practical pointer: If X = g(U) are supposed to be generated by uniform U(0,1) samples U_i , try $X_1^{(i)} = g(U_i)$ and

 $X_2^{(i)} = g(1 - U_i)$. IF g(u) is monotone increasing, this works! Caution, without some restrictions, it can make things worse

Calculations

Returning to our Monte Carlo integration example, find the n that will give absolute error at most 0.01 at the 95% confidence level using antithetic variates. Experiment with this Matlab code.

```
> mu = exp(1)-1
> rand('seed',0)
> alpha = 0.05 % 95 percent confidence level
> zalpha = stdn_inv(1 - alpha/2)
> n = 100
> U1 = rand(n,1);
> U2 = 1-U1;
> Xn = 0.5*(exp(U1)+exp(U2));
> Xbar = mean(Xn)
> sigma2 = var(Xn)
> bta = zalpha*sqrt(sigma2/n)
```

Basic Idea:

- <+-> Find a random variable C, with known mean μ_C and form r.v. $X_C = X + \beta (C \mu)$.
- Have $E[X_C] = E[X] = \mu$.
- Have $Var([X_C]) = Var(X) + \beta^2 Var(C) + 2\beta Cov(X, C)$.
- So if $2\beta \operatorname{Cov}(X,C) + \beta^2 \operatorname{Var}(C) < 0$, we get reduction with optimum at $\beta = \beta^* = -\operatorname{Cov}(Y,C) / \operatorname{Var}(C)$ (why?), with variance $(1-\rho^2(X,C)) \operatorname{Var}(X)$. In practice, we estimate β^* experimentally.

Basic Idea:

- <+-> Find a random variable C, with known mean μ_C and form r.v. $X_C = X + \beta (C \mu)$.
- Have $E[X_C] = E[X] = \mu$.
- Have $Var([X_C]) = Var(X) + \beta^2 Var(C) + 2\beta Cov(X, C)$.
- So if $2\beta \operatorname{Cov}(X,C) + \beta^2 \operatorname{Var}(C) < 0$, we get reduction with optimum at $\beta = \beta^* = -\operatorname{Cov}(Y,C) / \operatorname{Var}(C)$ (why?), with variance $(1-\rho^2(X,C)) \operatorname{Var}(X)$. In practice, we estimate β^* experimentally.

Basic Idea:

- <+-> Find a random variable C, with known mean μ_C and form r.v. $X_C = X + \beta (C \mu)$.
- Have $E[X_C] = E[X] = \mu$.
- Have $Var([X_C]) = Var(X) + \beta^2 Var(C) + 2\beta Cov(X, C)$.
- So if $2\beta \operatorname{Cov}(X,C) + \beta^2 \operatorname{Var}(C) < 0$, we get reduction with optimum at $\beta = \beta^* = -\operatorname{Cov}(Y,C) / \operatorname{Var}(C)$ (why?), with variance $(1-\rho^2(X,C)) \operatorname{Var}(X)$. In practice, we estimate β^* experimentally.

Basic Idea:

- <+-> Find a random variable C, with known mean μ_C and form r.v. $X_C = X + \beta (C \mu)$.
- Have $E[X_C] = E[X] = \mu$.
- Have $Var([X_C]) = Var(X) + \beta^2 Var(C) + 2\beta Cov(X, C)$.
- So if $2\beta \operatorname{Cov}(X,C) + \beta^2 \operatorname{Var}(C) < 0$, we get reduction with optimum at $\beta = \beta^* = -\operatorname{Cov}(Y,C) / \operatorname{Var}(C)$ (why?), with variance $(1-\rho^2(X,C)) \operatorname{Var}(X)$. In practice, we estimate β^* experimentally.

Basic Idea:

- <+-> Find a random variable C, with known mean μ_C and form r.v. $X_C = X + \beta (C \mu)$.
- Have $E[X_C] = E[X] = \mu$.
- Have $Var([X_C]) = Var(X) + \beta^2 Var(C) + 2\beta Cov(X, C)$.
- So if $2\beta \operatorname{Cov}(X,C) + \beta^2 \operatorname{Var}(C) < 0$, we get reduction with optimum at $\beta = \beta^* = -\operatorname{Cov}(Y,C) / \operatorname{Var}(C)$ (why?), with variance $(1-\rho^2(X,C)) \operatorname{Var}(X)$. In practice, we estimate β^* experimentally.

Calculations

Returning to our Monte Carlo integration example, find the n that will give absolute error at most 0.01 at the 95% confidence level. Experiment with this Matlab code.

```
> mu = exp(1)-1
> rand('seed',0)
> alpha = 0.05 % 95 percent confidence level
> zalpha = stdn_inv(1 - alpha/2)
> n = 100
> Un = rand(n,1);
> Cn = 1+(exp(1)-1)*Un; % Control variate based on
linear approxn
> muC = 1 + (exp(1) - 1) * 0.5 \% Expected value of C
> btta = -0.5; % postive correlation, so negative beta
> Xn = exp(Un);
> XCbar = mean(Xn+btta*(Cn-muC))
> sigma2 = var(Xn+btta*(Cn-muC))
> bta = zalpha*sqrt(sigma2/n)
```