Outline

1. Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
 - BT 4.1: Numerical Integration
 - BT 4.2: Monte Carlo Integration
 - BT 4.3: Generating Pseudorandom Variates
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

- BT 4.1: Numerical Integration
- BT 4.2: Monte Carlo Integration
- BT 4.3: Generating Pseudorandom Variates
1. Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
 - BT 4.1: Numerical Integration
 - BT 4.2: Monte Carlo Integration
 - BT 4.3: Generating Pseudorandom Variates
The Basic Idea

Monte Carlo Simulation:

- Create a quantitative model of a process.
- Treat the events that constitute the process as random.
- Generate random variables to simulate the events.
- Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:

We want to approximate $\int_{a}^{b} g(x) \, dx$. For convenience, assume $g(x) \geq 0$, so that this integral represents (positive) area. Let’s use $\int_{0}^{1} e^{x} \, dx = e - 1 \approx 1.7183$ as a test case.
The Basic Idea

Monte Carlo Simulation:
- Create a quantitative model of a process.
- Treat the events that constitute the process as random.
- Generate random variables to simulate the events.
- Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:

We want to approximate \(\int_a^b g(x) \, dx \). For convenience, assume \(g(x) \geq 0 \), so that this integral represents (positive) area. Let’s use \(\int_0^1 e^x \, dx = e - 1 \approx 1.7183 \) as a test case.
The Basic Idea

Monte Carlo Simulation:
- Create a quantitative model of a process.
- Treat the events that constitute the process as random.
- Generate random variables to simulate the events.
- Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:
We want to approximate \(\int_a^b g(x) \, dx \). For convenience, assume \(g(x) \geq 0 \), so that this integral represents (positive) area. Let’s use \(\int_0^1 e^x \, dx = e - 1 \approx 1.7183 \) as a test case.
The Basic Idea

Monte Carlo Simulation:

- Create a quantitative model of a process.
- Treat the events that constitute the process as random.
- Generate random variables to simulate the events.
- Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:

We want to approximate \(\int_{a}^{b} g(x) \, dx \). For convenience, assume \(g(x) \geq 0 \), so that this integral represents (positive) area. Let’s use \(\int_{0}^{1} e^x \, dx = e - 1 \approx 1.7183 \) as a test case.
Monte Carlo Simulation:

- Create a quantitative model of a process.
- Treat the events that constitute the process as random.
- Generate random variables to simulate the events.
- Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:

We want to approximate \(\int_a^b g(x) \, dx \). For convenience, assume \(g(x) \geq 0 \), so that this integral represents (positive) area. Let’s use \(\int_0^1 e^x \, dx = e - 1 \approx 1.7183 \) as a test case.
The Basic Idea

Monte Carlo Simulation:

- Create a quantitative model of a process.
- Treat the events that constitute the process as random.
- Generate random variables to simulate the events.
- Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:

We want to approximate \(\int_{a}^{b} g(x) \, dx \). For convenience, assume \(g(x) \geq 0 \), so that this integral represents (positive) area. Let’s use \(\int_{0}^{1} e^x \, dx = e - 1 \approx 1.7183 \) as a test case.
Monte Carlo Integration

Hit or Miss Monte Carlo Method:

- Enclose the graph in a box of known area A (in our test case, $0 \leq x \leq 1$, $0 \leq y \leq 3$, so $A = 3$.)
- Throw N random darts at the area, uniformly distributed in x and y directions. Note: the event of a dart throw is represented by a random pair (X_i, Y_i) of independent r.v.’s.
- Count up the number N_H of darts that fall in the area, i.e., for which $Y_i \leq g(X_i)$.
- Proportionately, $\frac{\int_a^b g(x) \, dx}{A} \approx \frac{N_H}{N}$, so we have
 $\int_a^b g(x) \, dx \approx \frac{N_H}{N} A$.
Monte Carlo Integration

Hit or Miss Monte Carlo Method:

- Enclose the graph in a box of known area A (in our test case, $0 \leq x \leq 1, 0 \leq y \leq 3$, so $A = 3$.)
- Throw N random darts at the area, uniformly distributed in x and y directions. Note: the event of a dart throw is represented by a random pair (X_i, Y_i) of independent r.v.’s.
- Count up the number N_H of darts that fall in the area, i.e., for which $Y_i \leq g(X_i)$.
- Proportionately, $\frac{\int_a^b g(x) \, dx}{A} \approx \frac{N_H}{N}$, so we have
 $\int_a^b g(x) \, dx \approx \frac{N_H}{N} A$.
Hit or Miss Monte Carlo Method:

- Enclose the graph in a box of known area A (in our test case, $0 \leq x \leq 1$, $0 \leq y \leq 3$, so $A = 3$).
- Throw N random darts at the area, uniformly distributed in x and y directions. Note: the event of a dart throw is represented by a random pair (X_i, Y_i) of independent r.v.’s.
- Count up the number N_H of darts that fall in the area, i.e., for which $Y_i \leq g(X_i)$.
- Proportionately, $\frac{\int_a^b g(x) \, dx}{A} \approx \frac{N_H}{N}$, so we have $\int_a^b g(x) \, dx \approx \frac{N_H}{N} A$.
Monte Carlo Integration

Hit or Miss Monte Carlo Method:

- Enclose the graph in a box of known area A (in our test case, $0 \leq x \leq 1$, $0 \leq y \leq 3$, so $A = 3$.)

- Throw N random darts at the area, uniformly distributed in x and y directions. Note: the event of a dart throw is represented by a random pair (X_i, Y_i) of independent r.v.’s.

- Count up the number N_H of darts that fall in the area, i.e., for which $Y_i \leq g(X_i)$.

- Proportionately, $\frac{\int_a^b g(x) \, dx}{A} \approx \frac{N_H}{N}$, so we have

$$\int_a^b g(x) \, dx \approx \frac{N_H}{N} A.$$
Monte Carlo Integration

Hit or Miss Monte Carlo Method:

- Enclose the graph in a box of known area A (in our test case, $0 \leq x \leq 1$, $0 \leq y \leq 3$, so $A = 3$.)

- Throw N random darts at the area, uniformly distributed in x and y directions. Note: the event of a dart throw is represented by a random pair (X_i, Y_i) of independent r.v.'s.

- Count up the number N_H of darts that fall in the area, i.e., for which $Y_i \leq g(X_i)$.

- Proportionately, $\frac{\int_a^b g(x) \, dx}{A} \approx \frac{N_H}{N}$, so we have $\int_a^b g(x) \, dx \approx \frac{N_H}{N} A$.
Example Calculation

Carry out the following steps in Matlab

> help rand
> format
> rand('seed',0)
> A = 3
> N = 10
> X = rand(N,1);
> Y = (3-0)*rand(N,1);
> hits = sum(Y <= exp(X))
> area = A*(hits/N)
> Itrue = exp(1)-1 % now try to improve accuracy
Monte Carlo Integration

Sample Mean Monte Carlo Method:

- Write integral as \(\int_{a}^{b} g(x) \, dx = \int_{a}^{b} \frac{g(x)}{f(x)} f(x) \, dx \) where \(f(x) \) is known positive p.d.f. which vanishes outside \([a, b]\).
- Interpret \(\int_{a}^{b} g(x) \, dx = E \left[\frac{g(X)}{f(X)} \right] \) where \(X \) is r.v. with p.d.f. \(f(x) \).
- Take \(N \) independent samples of \(X \) and deduce

\[
\int_{a}^{b} g(x) \, dx \approx \frac{1}{N} \sum_{i=1}^{N} \frac{g(X_i)}{f(X_i)}.
\]
Sample Mean Monte Carlo Method:

- Write integral as \(\int_{a}^{b} g(x) \, dx = \int_{a}^{b} \frac{g(x)}{f(x)} f(x) \, dx \) where \(f(x) \) is known positive p.d.f. which vanishes outside \([a, b]\).

- Interpret \(\int_{a}^{b} g(x) \, dx = E \left[\frac{g(X)}{f(X)} \right] \) where \(X \) is r.v. with p.d.f. \(f(x) \).

- Take \(N \) independent samples of \(X \) and deduce

 \[
 \int_{a}^{b} g(x) \, dx \approx \frac{1}{N} \sum_{i=1}^{N} \frac{g(X_i)}{f(X_i)}.
 \]
Monte Carlo Integration

Sample Mean Monte Carlo Method:

- Write integral as \(\int_a^b g(x) \, dx = \int_a^b \frac{g(x)}{f(x)} f(x) \, dx \) where \(f(x) \) is known positive p.d.f. which vanishes outside \([a, b]\).

- Interpret \(\int_a^b g(x) \, dx = E \left[\frac{g(X)}{f(X)} \right] \) where \(X \) is r.v. with p.d.f. \(f(x) \).

- Take \(N \) independent samples of \(X \) and deduce
 \[
 \int_a^b g(x) \, dx \approx \frac{1}{N} \sum_{i=1}^{N} \frac{g(X_i)}{f(X_i)}.
 \]
Monte Carlo Integration

Sample Mean Monte Carlo Method:

- Write integral as \(\int_a^b g(x) \, dx = \int_a^b \frac{g(x)}{f(x)} f(x) \, dx \) where \(f(x) \) is known positive p.d.f. which vanishes outside \([a, b]\).
- Interpret \(\int_a^b g(x) \, dx = E \left[\frac{g(X)}{f(X)} \right] \) where \(X \) is r.v. with p.d.f. \(f(x) \).
- Take \(N \) independent samples of \(X \) and deduce
 \[
 \int_a^b g(x) \, dx \approx \frac{1}{N} \sum_{i=1}^{N} \frac{g(X_i)}{f(X_i)}.
 \]
For our example, take \(f(x) = 1 \). Carry out the following steps in Matlab

```matlab
> rand('state',0)
> N = 10
> X = rand(N,1);
> expectI = sum(exp(X))/N
> Itrue = exp(1)-1 % now try to improve accuracy
```
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

- BT 4.1: Numerical Integration
- BT 4.2: Monte Carlo Integration
- BT 4.3: Generating Pseudorandom Variates
About “random” numbers:

They aren’t really random. That’s why we call them “pseudo-random.” Moreover,

- They are completely deterministic, given an initial “seed” number, a uniform distribution is usually generated by a congruential formula (in Matlab, \texttt{rand} function.)

- As such, they repeat values according to a “period” which is to be avoided, as that repeating the numbers introduces discernable bias (in Matlab, old \texttt{rand} has period $2^{31} - 2$, new has period $(2^{19937} - 1)/2$.

About “random” numbers:

They aren’t really random. That’s why we call them “pseudo-random.” Moreover,

- They are completely deterministic, given an initial “seed” number, a uniform distribution is usually generated by a congruential formula (in Matlab, `rand` function.)
- As such, they repeat values according to a “period” which is to be avoided, as that repeating the numbers introduces discernable bias (in Matlab, old `rand` has period $2^{31} - 2$, new has period $(2^{19937} - 1) / 2$.
About “random” numbers:

They aren’t really random. That’s why we call them “pseudo-random.” Moreover,

- They are completely deterministic, given an initial “seed” number, a uniform distribution is usually generated by a congruential formula (in Matlab, \texttt{rand} function.)
- As such, they repeat values according to a “period” which is to be avoided, as that repeating the numbers introduces discernable bias (in Matlab, old \texttt{rand} has period $2^{31} - 2$, new has period $(2^{19937} - 1)/2$.}
Pseudo-Random Variables

About “random” numbers (continued):

They aren’t really random. That’s why we call them “pseudo-random.” Moreover,

- Most other distributions are simulated by various tricks applied to uniformly generated r.v.’s.
- A common method is inverse transform, which uses the fact that if \(F(X) \) is the c.d.f. for r.v. \(X \), and the inverse function \(F^{-1} \) can be found, then \(U = F(X) \) is uniformly distributed on \([0, 1]\), and \(X = F^{-1}(U) \) (verify this and use it in an exponential example.)
- Also used are an “acceptance-rejection” method and Box-Mueller for normal distributions (in Matlab, \texttt{randn} function) – both depend on uniform r.v.’s.
About “random” numbers (continued):

They aren’t really random. That’s why we call them “pseudo-random.” Moreover,

- Most other distributions are simulated by various tricks applied to uniformly generated r.v.’s.

- A common method is inverse transform, which uses the fact that if \(F(X) \) is the c.d.f. for r.v. \(X \), and the inverse function \(F^{-1} \) can be found, then \(U = F(X) \) is uniformly distributed on \([0, 1]\), and \(X = F^{-1}(U) \) (verify this and use it in an exponential example.)

- Also used are an “acceptance-rejection” method and Box-Mueller for normal distributions (in Matlab, \texttt{randn} function) – both depend on uniform r.v.’s.
About “random” numbers (continued):

They aren’t really random. That’s why we call them “pseudo-random.” Moreover,

- Most other distributions are simulated by various tricks applied to uniformly generated r.v.’s.

- A common method is inverse transform, which uses the fact that if $F(X)$ is the c.d.f. for r.v. X, and the inverse function F^{-1} can be found, then $U = F(X)$ is uniformly distributed on $[0, 1]$, and $X = F^{-1}(U)$ (verify this and use it in an exponential example.)

- Also used are an “acceptance-rejection” method and Box-Mueller for normal distributions (in Matlab, `randn` function) – both depend on uniform r.v.’s.
Pseudo-Random Variables

About “random” numbers (continued):

They aren’t really random. That’s why we call them “pseudo-random.” Moreover,

- Most other distributions are simulated by various tricks applied to uniformly generated r.v.’s.

- A common method is inverse transform, which uses the fact that if $F(X)$ is the c.d.f. for r.v. X, and the inverse function F^{-1} can be found, then $U = F(X)$ is uniformly distributed on $[0, 1]$, and $X = F^{-1}(U)$ (verify this and use it in an exponential example.)

- Also used are an “acceptance-rejection” method and Box-Mueller for normal distributions (in Matlab, `randn` function) – both depend on uniform r.v.’s.