
BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

JDEP 384H: Numerical Methods in Business

Instructor: Thomas Shores
Department of Mathematics

Lecture 20, February 29, 2007
110 Kaufmann Center

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

Outline

1 BT 3.4: Solving Nonlinear Systems
Univariate Problems
Multivariate Problems

2 Chapter 4: Numerical Integration: Deterministic and Monte
Carlo Methods
BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

Univariate Problems
Multivariate Problems

Outline

1 BT 3.4: Solving Nonlinear Systems
Univariate Problems
Multivariate Problems

2 Chapter 4: Numerical Integration: Deterministic and Monte
Carlo Methods
BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

Example

Example

A European call option has strike price $54 on a stock with current
price $50, expires in �ve months, and the risk-free rate is 7%. Its
current price is $2.85. What is the implied volatility?

Solution. We have a standard formula for this situation that is
stored in the function bseurcall. Get help on it and use
bseurcall to set up an anonymous function of σ using which
equals zero when the correct σ is used.

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

Univariate Problems
Multivariate Problems

Nonlinear Optimization for Univariate Functions

Basic Problem:

Given a function f (x), �nd real number x∗ with f (x∗) = min f (x)
over a range of x values. How do we �nd a solution (if it exists)?

We could solve the equation f ′ (x) = 0 using ideas of root
�nding above. Why does this help?

Matlab has a built-in command fminbnd that does not use
derivative information, but a �bracketing� procedure.

Use Matlab to minimize f (x) = x − 2 sin (x) on interval [0, 3].

> help fminbnd

> fminbnd(myfcn,0,3)

> [x,y,exitflag,output]=fminbnd(@(x) x-2*sin(x),0,3)

> x = 0:.01:3;

> plot(x, x-2*sin(x))

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

Univariate Problems
Multivariate Problems

Nonlinear Optimization for Univariate Functions

Basic Problem:

Given a function f (x), �nd real number x∗ with f (x∗) = min f (x)
over a range of x values. How do we �nd a solution (if it exists)?

We could solve the equation f ′ (x) = 0 using ideas of root
�nding above. Why does this help?

Matlab has a built-in command fminbnd that does not use
derivative information, but a �bracketing� procedure.

Use Matlab to minimize f (x) = x − 2 sin (x) on interval [0, 3].

> help fminbnd

> fminbnd(myfcn,0,3)

> [x,y,exitflag,output]=fminbnd(@(x) x-2*sin(x),0,3)

> x = 0:.01:3;

> plot(x, x-2*sin(x))

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

Univariate Problems
Multivariate Problems

Nonlinear Optimization for Univariate Functions

Basic Problem:

Given a function f (x), �nd real number x∗ with f (x∗) = min f (x)
over a range of x values. How do we �nd a solution (if it exists)?

We could solve the equation f ′ (x) = 0 using ideas of root
�nding above. Why does this help?

Matlab has a built-in command fminbnd that does not use
derivative information, but a �bracketing� procedure.

Use Matlab to minimize f (x) = x − 2 sin (x) on interval [0, 3].

> help fminbnd

> fminbnd(myfcn,0,3)

> [x,y,exitflag,output]=fminbnd(@(x) x-2*sin(x),0,3)

> x = 0:.01:3;

> plot(x, x-2*sin(x))

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

Univariate Problems
Multivariate Problems

Nonlinear Optimization for Univariate Functions

Basic Problem:

Given a function f (x), �nd real number x∗ with f (x∗) = min f (x)
over a range of x values. How do we �nd a solution (if it exists)?

We could solve the equation f ′ (x) = 0 using ideas of root
�nding above. Why does this help?

Matlab has a built-in command fminbnd that does not use
derivative information, but a �bracketing� procedure.

Use Matlab to minimize f (x) = x − 2 sin (x) on interval [0, 3].

> help fminbnd

> fminbnd(myfcn,0,3)

> [x,y,exitflag,output]=fminbnd(@(x) x-2*sin(x),0,3)

> x = 0:.01:3;

> plot(x, x-2*sin(x))

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

Univariate Problems
Multivariate Problems

Outline

1 BT 3.4: Solving Nonlinear Systems
Univariate Problems
Multivariate Problems

2 Chapter 4: Numerical Integration: Deterministic and Monte
Carlo Methods
BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

Multivariate Nonlinear Optimization

Basic Problem:

Given a scalar valued function f (x1, x2, . . . , xn) = f (x), �nd vector
x∗ with f (x∗) = min f (x) over a range of x values. How do we �nd
a solution (given that there is one)?

Many techniques exist (all of Chapter 6!)

Although this is not e�cient, theoretically one can turn every
root �nding problem into an optimization problem: to solve
the vector equation f (x) = 0 for x, simply �nd the x∗ that
minimizes the scalar function g (x) = ‖f (x)‖2. If g (x∗) = 0,
then f (x∗) = 0. So optimization is a more general problem
than root�nding.

Matlab does provide a multivariate solver called fminsearch.
Get help on it and use it to solve the example on the next
slide. Try di�erent starting points.

Multivariate Nonlinear Optimization

Basic Problem:

Given a scalar valued function f (x1, x2, . . . , xn) = f (x), �nd vector
x∗ with f (x∗) = min f (x) over a range of x values. How do we �nd
a solution (given that there is one)?

Many techniques exist (all of Chapter 6!)

Although this is not e�cient, theoretically one can turn every
root �nding problem into an optimization problem: to solve
the vector equation f (x) = 0 for x, simply �nd the x∗ that
minimizes the scalar function g (x) = ‖f (x)‖2. If g (x∗) = 0,
then f (x∗) = 0. So optimization is a more general problem
than root�nding.

Matlab does provide a multivariate solver called fminsearch.
Get help on it and use it to solve the example on the next
slide. Try di�erent starting points.

Multivariate Nonlinear Optimization

Basic Problem:

Given a scalar valued function f (x1, x2, . . . , xn) = f (x), �nd vector
x∗ with f (x∗) = min f (x) over a range of x values. How do we �nd
a solution (given that there is one)?

Many techniques exist (all of Chapter 6!)

Although this is not e�cient, theoretically one can turn every
root �nding problem into an optimization problem: to solve
the vector equation f (x) = 0 for x, simply �nd the x∗ that
minimizes the scalar function g (x) = ‖f (x)‖2. If g (x∗) = 0,
then f (x∗) = 0. So optimization is a more general problem
than root�nding.

Matlab does provide a multivariate solver called fminsearch.
Get help on it and use it to solve the example on the next
slide. Try di�erent starting points.

Multivariate Nonlinear Optimization

Basic Problem:

Given a scalar valued function f (x1, x2, . . . , xn) = f (x), �nd vector
x∗ with f (x∗) = min f (x) over a range of x values. How do we �nd
a solution (given that there is one)?

Many techniques exist (all of Chapter 6!)

Although this is not e�cient, theoretically one can turn every
root �nding problem into an optimization problem: to solve
the vector equation f (x) = 0 for x, simply �nd the x∗ that
minimizes the scalar function g (x) = ‖f (x)‖2. If g (x∗) = 0,
then f (x∗) = 0. So optimization is a more general problem
than root�nding.

Matlab does provide a multivariate solver called fminsearch.
Get help on it and use it to solve the example on the next
slide. Try di�erent starting points.

Example Calculations

Start by writing out what the function f : R2 → R2 de�ned below
actually represents.

> f = @(x) [x(1)^2 - 10*x(1) + x(2)^3 + 8;

> x(1)*x(2)^2 + x(1) - 10*x(2) + 8]

> g = @(x) norm(f(x))^2

> help fminsearch

> fminsearch(g,[0;0])

> f(ans)

> fminsearch(g,[2;3])

> f(ans)

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

Outline

1 BT 3.4: Solving Nonlinear Systems
Univariate Problems
Multivariate Problems

2 Chapter 4: Numerical Integration: Deterministic and Monte
Carlo Methods
BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

Numerical Integration

Basic Problem:

To calculate the de�nite integral I =

∫ b

a

f (x) dx approximately

when analytical methods fail us. Divide interval [a, b] into N equal
subintervals by nodes x0, x1, . . . , xN and width dx = (b − a) /N:

Left Riemann sums: I ≈ dx

N−1∑
j=0

f (xj)

Right Riemann sums: I ≈ dx

N∑
j=1

f (xj). Average left/right:

Trapezoidal: I ≈ dx

2

f (x0) +
N−1∑
j=1

f (xj) + f (xN)


Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

Numerical Integration

Basic Problem:

To calculate the de�nite integral I =

∫ b

a

f (x) dx approximately

when analytical methods fail us. Divide interval [a, b] into N equal
subintervals by nodes x0, x1, . . . , xN and width dx = (b − a) /N:

Left Riemann sums: I ≈ dx

N−1∑
j=0

f (xj)

Right Riemann sums: I ≈ dx

N∑
j=1

f (xj). Average left/right:

Trapezoidal: I ≈ dx

2

f (x0) +
N−1∑
j=1

f (xj) + f (xN)


Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

Numerical Integration

Basic Problem:

To calculate the de�nite integral I =

∫ b

a

f (x) dx approximately

when analytical methods fail us. Divide interval [a, b] into N equal
subintervals by nodes x0, x1, . . . , xN and width dx = (b − a) /N:

Left Riemann sums: I ≈ dx

N−1∑
j=0

f (xj)

Right Riemann sums: I ≈ dx

N∑
j=1

f (xj). Average left/right:

Trapezoidal: I ≈ dx

2

f (x0) +
N−1∑
j=1

f (xj) + f (xN)


Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

Numerical Integration

Basic Problem:

To calculate the de�nite integral I =

∫ b

a

f (x) dx approximately

when analytical methods fail us. Divide interval [a, b] into N equal
subintervals by nodes x0, x1, . . . , xN and width dx = (b − a) /N:

Left Riemann sums: I ≈ dx

N−1∑
j=0

f (xj)

Right Riemann sums: I ≈ dx

N∑
j=1

f (xj). Average left/right:

Trapezoidal: I ≈ dx

2

f (x0) +
N−1∑
j=1

f (xj) + f (xN)


Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

Another Numerical Integration

Basic Problem:

To calculate the de�nite integral I =

∫ b

a

w(x)f (x) dx

approximately when analytical methods fail us. Here w (x) is a
nonnegative �weight� function and either a or b could be in�nite.

Motivating formula: I ≈
N∑
j=1

wj f (xj), where x1, . . . , xN are

certain nodes on a �xed reference interval and w1, . . . ,wN are
�weights�, both of which are computed for once and for all.

Any other integral can be mapped to the reference interval by
a simple change of variables.

A classical example (Gaussian quadrature): I =

∫
1

−1
1 f (x) dx

Another classic (Gauss-Hermite quadrature, text, p. 216):

I =

∫ ∞

−∞
e−x2 f (x) dx .

Another Numerical Integration

Basic Problem:

To calculate the de�nite integral I =

∫ b

a

w(x)f (x) dx

approximately when analytical methods fail us. Here w (x) is a
nonnegative �weight� function and either a or b could be in�nite.

Motivating formula: I ≈
N∑
j=1

wj f (xj), where x1, . . . , xN are

certain nodes on a �xed reference interval and w1, . . . ,wN are
�weights�, both of which are computed for once and for all.

Any other integral can be mapped to the reference interval by
a simple change of variables.

A classical example (Gaussian quadrature): I =

∫
1

−1
1 f (x) dx

Another classic (Gauss-Hermite quadrature, text, p. 216):

I =

∫ ∞

−∞
e−x2 f (x) dx .

Another Numerical Integration

Basic Problem:

To calculate the de�nite integral I =

∫ b

a

w(x)f (x) dx

approximately when analytical methods fail us. Here w (x) is a
nonnegative �weight� function and either a or b could be in�nite.

Motivating formula: I ≈
N∑
j=1

wj f (xj), where x1, . . . , xN are

certain nodes on a �xed reference interval and w1, . . . ,wN are
�weights�, both of which are computed for once and for all.

Any other integral can be mapped to the reference interval by
a simple change of variables.

A classical example (Gaussian quadrature): I =

∫
1

−1
1 f (x) dx

Another classic (Gauss-Hermite quadrature, text, p. 216):

I =

∫ ∞

−∞
e−x2 f (x) dx .

Another Numerical Integration

Basic Problem:

To calculate the de�nite integral I =

∫ b

a

w(x)f (x) dx

approximately when analytical methods fail us. Here w (x) is a
nonnegative �weight� function and either a or b could be in�nite.

Motivating formula: I ≈
N∑
j=1

wj f (xj), where x1, . . . , xN are

certain nodes on a �xed reference interval and w1, . . . ,wN are
�weights�, both of which are computed for once and for all.

Any other integral can be mapped to the reference interval by
a simple change of variables.

A classical example (Gaussian quadrature): I =

∫
1

−1
1 f (x) dx

Another classic (Gauss-Hermite quadrature, text, p. 216):

I =

∫ ∞

−∞
e−x2 f (x) dx .

Another Numerical Integration

Basic Problem:

To calculate the de�nite integral I =

∫ b

a

w(x)f (x) dx

approximately when analytical methods fail us. Here w (x) is a
nonnegative �weight� function and either a or b could be in�nite.

Motivating formula: I ≈
N∑
j=1

wj f (xj), where x1, . . . , xN are

certain nodes on a �xed reference interval and w1, . . . ,wN are
�weights�, both of which are computed for once and for all.

Any other integral can be mapped to the reference interval by
a simple change of variables.

A classical example (Gaussian quadrature): I =

∫
1

−1
1 f (x) dx

Another classic (Gauss-Hermite quadrature, text, p. 216):

I =

∫ ∞

−∞
e−x2 f (x) dx .

Examples

Matlab uses an adaptive Simpson rule, which involves estimating
the function as a quadratic over two subintervals, and using error
estimates to determine if the current approximation is good
enough. If not, subintervals are further subdivided.

> f = @(x) chis_pdf(x,8)

> format long

> N = 40

> dx = (4-0)/N

> x = linspace(0,4,N+1);

> y = f(x);

> Itrue = chis_cdf(4,8)

> IMatlab = quad(f,0,4)

> Irl = dx*sum(f(x(1:N)))

> Irr = dx*sum(f(x(2:N+1)))

> Itrap = 0.5*(Irl+Irr)

> edit GaussInt % don't change, just look under the hood

> IGquad = GaussInt(f,[0,4],3) % try more nodes, up to 8

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

Outline

1 BT 3.4: Solving Nonlinear Systems
Univariate Problems
Multivariate Problems

2 Chapter 4: Numerical Integration: Deterministic and Monte
Carlo Methods
BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

The Basic Idea

Monte Carlo Simulation:

Create a quantitative model of a process.

Treat the events that constitute the process as random.

Generate random variables to simulate the events.

Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:

We want to approximate
∫ b

a
g (x) dx . For convenience, assume

g (x) ≥ 0, so that this integral represents (positive) area. Let's use∫
1

0
exdx = e − 1 ≈ 1.7183 as a test case.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

The Basic Idea

Monte Carlo Simulation:

Create a quantitative model of a process.

Treat the events that constitute the process as random.

Generate random variables to simulate the events.

Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:

We want to approximate
∫ b

a
g (x) dx . For convenience, assume

g (x) ≥ 0, so that this integral represents (positive) area. Let's use∫
1

0
exdx = e − 1 ≈ 1.7183 as a test case.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

The Basic Idea

Monte Carlo Simulation:

Create a quantitative model of a process.

Treat the events that constitute the process as random.

Generate random variables to simulate the events.

Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:

We want to approximate
∫ b

a
g (x) dx . For convenience, assume

g (x) ≥ 0, so that this integral represents (positive) area. Let's use∫
1

0
exdx = e − 1 ≈ 1.7183 as a test case.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

The Basic Idea

Monte Carlo Simulation:

Create a quantitative model of a process.

Treat the events that constitute the process as random.

Generate random variables to simulate the events.

Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:

We want to approximate
∫ b

a
g (x) dx . For convenience, assume

g (x) ≥ 0, so that this integral represents (positive) area. Let's use∫
1

0
exdx = e − 1 ≈ 1.7183 as a test case.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

The Basic Idea

Monte Carlo Simulation:

Create a quantitative model of a process.

Treat the events that constitute the process as random.

Generate random variables to simulate the events.

Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:

We want to approximate
∫ b

a
g (x) dx . For convenience, assume

g (x) ≥ 0, so that this integral represents (positive) area. Let's use∫
1

0
exdx = e − 1 ≈ 1.7183 as a test case.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

The Basic Idea

Monte Carlo Simulation:

Create a quantitative model of a process.

Treat the events that constitute the process as random.

Generate random variables to simulate the events.

Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:

We want to approximate
∫ b

a
g (x) dx . For convenience, assume

g (x) ≥ 0, so that this integral represents (positive) area. Let's use∫
1

0
exdx = e − 1 ≈ 1.7183 as a test case.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

Monte Carlo Integration

Hit or Miss Monte Carlo Method:

Enclose the graph in a box of known area A (in our test case,
0 ≤ x ≤ 1, 0 ≤ y ≤ 3, so A = 3.)

Throw N random darts at the area, uniformly distributed in x

and y directions. Note: the event of a dart throw is
represented by a random pair (Xi ,Yi) of independent r.v.'s.

Count up the number NH of darts that fall in the area, i.e., for
which Yi ≤ g (Xi).

Proportionately,

∫ b

a
g (x) dx

A
≈ NH

N
, so we have∫ b

a

g (x) dx ≈ NH

N
A .

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

Monte Carlo Integration

Hit or Miss Monte Carlo Method:

Enclose the graph in a box of known area A (in our test case,
0 ≤ x ≤ 1, 0 ≤ y ≤ 3, so A = 3.)

Throw N random darts at the area, uniformly distributed in x

and y directions. Note: the event of a dart throw is
represented by a random pair (Xi ,Yi) of independent r.v.'s.

Count up the number NH of darts that fall in the area, i.e., for
which Yi ≤ g (Xi).

Proportionately,

∫ b

a
g (x) dx

A
≈ NH

N
, so we have∫ b

a

g (x) dx ≈ NH

N
A .

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

Monte Carlo Integration

Hit or Miss Monte Carlo Method:

Enclose the graph in a box of known area A (in our test case,
0 ≤ x ≤ 1, 0 ≤ y ≤ 3, so A = 3.)

Throw N random darts at the area, uniformly distributed in x

and y directions. Note: the event of a dart throw is
represented by a random pair (Xi ,Yi) of independent r.v.'s.

Count up the number NH of darts that fall in the area, i.e., for
which Yi ≤ g (Xi).

Proportionately,

∫ b

a
g (x) dx

A
≈ NH

N
, so we have∫ b

a

g (x) dx ≈ NH

N
A .

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

Monte Carlo Integration

Hit or Miss Monte Carlo Method:

Enclose the graph in a box of known area A (in our test case,
0 ≤ x ≤ 1, 0 ≤ y ≤ 3, so A = 3.)

Throw N random darts at the area, uniformly distributed in x

and y directions. Note: the event of a dart throw is
represented by a random pair (Xi ,Yi) of independent r.v.'s.

Count up the number NH of darts that fall in the area, i.e., for
which Yi ≤ g (Xi).

Proportionately,

∫ b

a
g (x) dx

A
≈ NH

N
, so we have∫ b

a

g (x) dx ≈ NH

N
A .

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.4: Solving Nonlinear Systems
Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods

BT 4.1: Numerical Integration
BT 4.2: Monte Carlo Integration

Monte Carlo Integration

Hit or Miss Monte Carlo Method:

Enclose the graph in a box of known area A (in our test case,
0 ≤ x ≤ 1, 0 ≤ y ≤ 3, so A = 3.)

Throw N random darts at the area, uniformly distributed in x

and y directions. Note: the event of a dart throw is
represented by a random pair (Xi ,Yi) of independent r.v.'s.

Count up the number NH of darts that fall in the area, i.e., for
which Yi ≤ g (Xi).

Proportionately,

∫ b

a
g (x) dx

A
≈ NH

N
, so we have∫ b

a

g (x) dx ≈ NH

N
A .

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

Example Calculation

Carry out the following steps in Matlab

> help rand

> format

> rand('seed',0)

> A = 3

> N = 10

> X = rand(N,1);

> Y = (3-0)*rand(N,1);

> hits = sum(Y <= exp(X))

> area = A*(hits/N)

> Itrue = exp(1)-1 % now try to improve accuracy

	BT 3.4: Solving Nonlinear Systems
	Univariate Problems
	Multivariate Problems

	Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
	BT 4.1: Numerical Integration
	BT 4.2: Monte Carlo Integration

