JDEP 384H: Numerical Methods in Business

Instructor: Thomas Shores Department of Mathematics

Lecture 20, February 29, 2007 110 Kaufmann Center

Outline

- BT 3.4: Solving Nonlinear Systems
 - Univariate Problems
 - Multivariate Problems
- Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
 - BT 4.1: Numerical Integration
 - BT 4.2: Monte Carlo Integration

Outline

- BT 3.4: Solving Nonlinear Systems
 - Univariate Problems
 - Multivariate Problems
- Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
 - BT 4.1: Numerical Integration
 - BT 4.2: Monte Carlo Integration

Example

Example

A European call option has strike price \$54 on a stock with current price \$50, expires in five months, and the risk-free rate is 7%. Its current price is \$2.85. What is the implied volatility?

Solution. We have a standard formula for this situation that is stored in the function bseurcall. Get help on it and use bseurcall to set up an anonymous function of σ using which equals zero when the correct σ is used.

Basic Problem:

- We could solve the equation f'(x) = 0 using ideas of root finding above. Why does this help?
- Matlab has a built-in command fminbnd that does not use derivative information, but a "bracketing" procedure.
- Use Matlab to minimize $f(x) = x 2\sin(x)$ on interval [0,3].

```
> help fminbnd
```

- > fminbnd(myfcn,0,3)
- > [x,y,exitflag,output]=fminbnd(@(x) x-2*sin(x),0,3)
- > x = 0:.01:3;
- > plot(x, x-2*sin(x))

Basic Problem:

- We could solve the equation f'(x) = 0 using ideas of root finding above. Why does this help?
- Matlab has a built-in command fminbnd that does not use derivative information, but a "bracketing" procedure.
- Use Matlab to minimize $f(x) = x 2\sin(x)$ on interval [0,3].

```
> help fminbnd
```

- > fminbnd(myfcn,0,3)
- > [x,y,exitflag,output]=fminbnd(@(x) x-2*sin(x),0,3)
- > x = 0:.01:3;
- > plot(x, x-2*sin(x))

Basic Problem:

- We could solve the equation f'(x) = 0 using ideas of root finding above. Why does this help?
- Matlab has a built-in command fminbnd that does not use derivative information, but a "bracketing" procedure.
- Use Matlab to minimize $f(x) = x 2\sin(x)$ on interval [0,3].

```
> help fminbnd
```

```
> fminbnd(myfcn,0,3)
```

$$> [x,y,exitflag,output]=fminbnd(@(x) x-2*sin(x),0,3)$$

$$> x = 0:.01:3;$$

$$> plot(x, x-2*sin(x))$$

Basic Problem:

- We could solve the equation f'(x) = 0 using ideas of root finding above. Why does this help?
- Matlab has a built-in command fminbnd that does not use derivative information, but a "bracketing" procedure.
- Use Matlab to minimize $f(x) = x 2\sin(x)$ on interval [0,3].

```
> help fminbnd
```

- > fminbnd(myfcn,0,3)
- > [x,y,exitflag,output]=fminbnd(@(x) x-2*sin(x),0,3)
- > x = 0:.01:3;
- > plot(x, x-2*sin(x))

Outline

- BT 3.4: Solving Nonlinear Systems
 - Univariate Problems
 - Multivariate Problems
- Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
 - BT 4.1: Numerical Integration
 - BT 4.2: Monte Carlo Integration

Basic Problem:

- Many techniques exist (all of Chapter 6!)
- Although this is not efficient, theoretically one can turn every root finding problem into an optimization problem: to solve the vector equation $\mathbf{f}(\mathbf{x}) = 0$ for \mathbf{x} , simply find the \mathbf{x}^* that minimizes the scalar function $\mathbf{g}(\mathbf{x}) = \|\mathbf{f}(\mathbf{x})\|^2$. If $\mathbf{g}(\mathbf{x}^*) = 0$, then $\mathbf{f}(\mathbf{x}^*) = 0$. So optimization is a more general problem than rootfinding.
- Matlab does provide a multivariate solver called fminsearch.
 Get help on it and use it to solve the example on the next slide. Try different starting points.

Basic Problem:

- Many techniques exist (all of Chapter 6!)
- Although this is not efficient, theoretically one can turn every root finding problem into an optimization problem: to solve the vector equation $\mathbf{f}(\mathbf{x}) = 0$ for \mathbf{x} , simply find the \mathbf{x}^* that minimizes the scalar function $\mathbf{g}(\mathbf{x}) = \|\mathbf{f}(\mathbf{x})\|^2$. If $\mathbf{g}(\mathbf{x}^*) = 0$, then $\mathbf{f}(\mathbf{x}^*) = 0$. So optimization is a more general problem than rootfinding.
- Matlab does provide a multivariate solver called fminsearch.
 Get help on it and use it to solve the example on the next slide. Try different starting points.

Basic Problem:

- Many techniques exist (all of Chapter 6!)
- Although this is not efficient, theoretically one can turn every root finding problem into an optimization problem: to solve the vector equation $\mathbf{f}(\mathbf{x}) = 0$ for \mathbf{x} , simply find the \mathbf{x}^* that minimizes the scalar function $\mathbf{g}(\mathbf{x}) = \|\mathbf{f}(\mathbf{x})\|^2$. If $\mathbf{g}(\mathbf{x}^*) = 0$, then $\mathbf{f}(\mathbf{x}^*) = 0$. So optimization is a more general problem than rootfinding.
- Matlab does provide a multivariate solver called fminsearch.
 Get help on it and use it to solve the example on the next slide. Try different starting points.

Basic Problem:

- Many techniques exist (all of Chapter 6!)
- Although this is not efficient, theoretically one can turn every root finding problem into an optimization problem: to solve the vector equation $\mathbf{f}(\mathbf{x}) = 0$ for \mathbf{x} , simply find the \mathbf{x}^* that minimizes the scalar function $\mathbf{g}(\mathbf{x}) = \|\mathbf{f}(\mathbf{x})\|^2$. If $\mathbf{g}(\mathbf{x}^*) = 0$, then $\mathbf{f}(\mathbf{x}^*) = 0$. So optimization is a more general problem than rootfinding.
- Matlab does provide a multivariate solver called fminsearch.
 Get help on it and use it to solve the example on the next slide. Try different starting points.

Example Calculations

Start by writing out what the function $f:\mathbb{R}^2 \to \mathbb{R}^2$ defined below actually represents.

```
> f = @(x) [x(1)^2 - 10*x(1) + x(2)^3 + 8;
> x(1)*x(2)^2 + x(1) - 10*x(2) + 8]
> g = @(x) norm(f(x))^2
> help fminsearch
> fminsearch(g,[0;0])
> f(ans)
> fminsearch(g,[2;3])
> f(ans)
```

Outline

- BT 3.4: Solving Nonlinear Systems
 - Univariate Problems
 - Multivariate Problems
- Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
 - BT 4.1: Numerical Integration
 - BT 4.2: Monte Carlo Integration

Basic Problem:

To calculate the definite integral $I = \int_a^b f(x) dx$ approximately when analytical methods fail us. Divide interval [a,b] into N equal subintervals by nodes x_0, x_1, \ldots, x_N and width dx = (b-a)/N:

- Left Riemann sums: $I \approx dx \sum_{j=0}^{N-1} f(x_j)$
- Right Riemann sums: $I \approx dx \sum_{j=1}^{N} f(x_j)$. Average left/right:
- Trapezoidal: $I \approx \frac{dx}{2} \left\{ f(x_0) + \sum_{j=1}^{N-1} f(x_j) + f(x_N) \right\}$

Basic Problem:

To calculate the definite integral $I = \int_a^b f(x) \ dx$ approximately when analytical methods fail us. Divide interval [a,b] into N equal subintervals by nodes x_0,x_1,\ldots,x_N and width dx = (b-a)/N:

- Left Riemann sums: $I \approx dx \sum_{j=0}^{N-1} f(x_j)$
- Right Riemann sums: $I \approx dx \sum_{j=1}^{N} f(x_j)$. Average left/right:
- Trapezoidal: $I \approx \frac{dx}{2} \left\{ f(x_0) + \sum_{j=1}^{N-1} f(x_j) + f(x_N) \right\}$

Basic Problem:

To calculate the definite integral $I = \int_a^b f(x) dx$ approximately when analytical methods fail us. Divide interval [a,b] into N equal subintervals by nodes x_0, x_1, \ldots, x_N and width dx = (b-a)/N:

- Left Riemann sums: $I \approx dx \sum_{j=0}^{N-1} f(x_j)$
- Right Riemann sums: $I \approx dx \sum_{j=1}^{N} f(x_j)$. Average left/right:
- Trapezoidal: $I \approx \frac{dx}{2} \left\{ f(x_0) + \sum_{j=1}^{N-1} f(x_j) + f(x_N) \right\}$

Basic Problem:

To calculate the definite integral $I = \int_a^b f(x) \ dx$ approximately when analytical methods fail us. Divide interval [a,b] into N equal subintervals by nodes x_0,x_1,\ldots,x_N and width dx = (b-a)/N:

- Left Riemann sums: $I \approx dx \sum_{j=0}^{N-1} f(x_j)$
- Right Riemann sums: $I \approx dx \sum_{j=1}^{N} f(x_j)$. Average left/right:
- Trapezoidal: $I \approx \frac{dx}{2} \left\{ f(x_0) + \sum_{j=1}^{N-1} f(x_j) + f(x_N) \right\}$

Basic Problem:

To calculate the definite integral $I = \int_a^b w(x) f(x) dx$ approximately when analytical methods fail us. Here w(x) is a nonnegative "weight" function and either a or b could be infinite.

- Motivating formula: $I \approx \sum_{j=1} w_j f(x_j)$, where x_1, \ldots, x_N are certain nodes on a fixed reference interval and w_1, \ldots, w_N are "weights", both of which are computed for once and for all.
- Any other integral can be mapped to the reference interval by a simple change of variables.
- A classical example (Gaussian quadrature): $I = \int_{-1}^{1} 1 f(x) dx$
- Another classic (Gauss-Hermite quadrature, text, p. 216): $I = \int_{-\infty}^{\infty} e^{-x^2} f(x) dx$

Basic Problem:

To calculate the definite integral $I = \int_{a}^{b} w(x)f(x) dx$ approximately when analytical methods fail us. Here w(x) is a nonnegative "weight" function and either a or b could be infinite.

- ullet Motivating formula: $Ipprox \sum_{i=1}^{n}w_{j}f\left(x_{j}
 ight)$, where x_{1},\ldots,x_{N} are certain nodes on a fixed reference interval and w_1, \ldots, w_N are "weights", both of which are computed for once and for all.
- Any other integral can be mapped to the reference interval by
- A classical example (Gaussian quadrature): $I = \int_{-1}^{1} 1 f(x) dx$
- Another classic (Gauss-Hermite quadrature, text, p. 216):

$$I = \int_{-\infty}^{\infty} e^{-x^2} f(x) dx.$$

Basic Problem:

To calculate the definite integral $I = \int_{a}^{b} w(x)f(x) dx$ approximately when analytical methods fail us. Here w(x) is a nonnegative "weight" function and either a or b could be infinite.

- ullet Motivating formula: $Ipprox \sum_{j=1}^{N}w_{j}f\left(x_{j}
 ight)$, where x_{1},\ldots,x_{N} are certain nodes on a fixed reference interval and w_1, \ldots, w_N are "weights", both of which are computed for once and for all.
- Any other integral can be mapped to the reference interval by a simple change of variables.
- A classical example (Gaussian quadrature): $I = \int_{-1}^{1} 1 f(x) dx$
- Another classic (Gauss-Hermite quadrature, text, p. 216):

$$I = \int_{-\infty}^{\infty} e^{-x^2} f(x) dx.$$

Basic Problem:

To calculate the definite integral $I = \int_a^b w(x) f(x) dx$ approximately when analytical methods fail us. Here w(x) is a nonnegative "weight" function and either a or b could be infinite.

- Motivating formula: $I \approx \sum_{j=1}^{N} w_j f(x_j)$, where x_1, \ldots, x_N are certain nodes on a fixed reference interval and w_1, \ldots, w_N are "weights", both of which are computed for once and for all.
- Any other integral can be mapped to the reference interval by a simple change of variables.
- A classical example (Gaussian quadrature): $I = \int_{-1}^{1} 1 f(x) dx$
- Another classic (Gauss-Hermite quadrature, text, p. 216): f^{∞}

$$I = \int_{-\infty}^{\infty} e^{-x^2} f(x) dx.$$

Basic Problem:

To calculate the definite integral $I = \int_a^b w(x) f(x) dx$ approximately when analytical methods fail us. Here w(x) is a nonnegative "weight" function and either a or b could be infinite.

- Motivating formula: $I \approx \sum_{j=1}^{n} w_j f(x_j)$, where x_1, \ldots, x_N are certain nodes on a fixed reference interval and w_1, \ldots, w_N are "weights", both of which are computed for once and for all.
- Any other integral can be mapped to the reference interval by a simple change of variables.
- A classical example (Gaussian quadrature): $I = \int_{-1}^{1} 1 f(x) dx$
- Another classic (Gauss-Hermite quadrature, text, p. 216): $I = \int_{-\infty}^{\infty} e^{-x^2} f(x) dx.$

Examples

Matlab uses an adaptive Simpson rule, which involves estimating the function as a quadratic over two subintervals, and using error estimates to determine if the current approximation is good enough. If not, subintervals are further subdivided.

```
> f = Q(x) chis_pdf(x,8)
> format long
> N = 40
> dx = (4-0)/N
> x = linspace(0,4,N+1);
> v = f(x):
> Itrue = chis_cdf(4,8)
> IMatlab = quad(f,0,4)
> Irl = dx*sum(f(x(1:N)))
> Irr = dx*sum(f(x(2:N+1)))
> Itrap = 0.5*(Irl+Irr)
> edit GaussInt % don't change, just look under the hood
> IGquad = GaussInt(f,[0,4],3) % try more nodes, up to 8
```

Outline

- BT 3.4: Solving Nonlinear Systems
 - Univariate Problems
 - Multivariate Problems
- Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods
 - BT 4.1: Numerical Integration
 - BT 4.2: Monte Carlo Integration

Monte Carlo Simulation:

- Create a quantitative model of a process.
- Treat the events that constitute the process as random.
- Generate random variables to simulate the events.
- Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:

Monte Carlo Simulation:

- Create a quantitative model of a process.
- Treat the events that constitute the process as random.
- Generate random variables to simulate the events.
- Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:

Monte Carlo Simulation:

- Create a quantitative model of a process.
- Treat the events that constitute the process as random.
- Generate random variables to simulate the events.
- Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:

Monte Carlo Simulation:

- Create a quantitative model of a process.
- Treat the events that constitute the process as random.
- Generate random variables to simulate the events.
- Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:

Monte Carlo Simulation:

- Create a quantitative model of a process.
- Treat the events that constitute the process as random.
- Generate random variables to simulate the events.
- Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:

Monte Carlo Simulation:

- Create a quantitative model of a process.
- Treat the events that constitute the process as random.
- Generate random variables to simulate the events.
- Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:

- Enclose the graph in a box of known area A (in our test case, $0 \le x \le 1$, $0 \le y \le 3$, so A = 3.)
- Throw N random darts at the area, uniformly distributed in x and y directions. Note: the event of a dart throw is represented by a random pair (X_i, Y_i) of independent r.v.'s.
- Count up the number N_H of darts that fall in the area, i.e., for which $Y_i \leq g(X_i)$.
- Proportionately, $\frac{\int_a^b g(x) dx}{A} \approx \frac{N_H}{N}$, so we have $\int_a^b g(x) dx \approx \frac{N_H}{N} A$.

- Enclose the graph in a box of known area A (in our test case, $0 \le x \le 1, \ 0 \le y \le 3$, so A = 3.)
- Throw N random darts at the area, uniformly distributed in x and y directions. Note: the event of a dart throw is represented by a random pair (X_i, Y_i) of independent r.v.'s.
- Count up the number N_H of darts that fall in the area, i.e., for which $Y_i \leq g(X_i)$.
- Proportionately, $\frac{\int_a^b g(x) dx}{A} \approx \frac{N_H}{N}$, so we have $\int_a^b g(x) dx \approx \frac{N_H}{N} A$.

- Enclose the graph in a box of known area A (in our test case, $0 \le x \le 1$, $0 \le y \le 3$, so A = 3.)
- Throw N random darts at the area, uniformly distributed in x and y directions. Note: the event of a dart throw is represented by a random pair (X_i, Y_i) of independent r.v.'s.
- Count up the number N_H of darts that fall in the area, i.e., for which $Y_i \leq g(X_i)$.

• Proportionately,
$$\frac{\int_a^b g(x) dx}{A} \approx \frac{N_H}{N}$$
, so we have $\int_a^b g(x) dx \approx \frac{N_H}{N} A$.

- Enclose the graph in a box of known area A (in our test case, $0 \le x \le 1$, $0 \le y \le 3$, so A = 3.)
- Throw N random darts at the area, uniformly distributed in x and y directions. Note: the event of a dart throw is represented by a random pair (X_i, Y_i) of independent r.v.'s.
- Count up the number N_H of darts that fall in the area, i.e., for which $Y_i \leq g(X_i)$.

• Proportionately,
$$\frac{\int_a^b g(x) dx}{A} \approx \frac{N_H}{N}$$
, so we have $\int_a^b g(x) dx \approx \frac{N_H}{N} A$.

- Enclose the graph in a box of known area A (in our test case, $0 \le x \le 1$, $0 \le y \le 3$, so A = 3.)
- Throw N random darts at the area, uniformly distributed in x and y directions. Note: the event of a dart throw is represented by a random pair (X_i, Y_i) of independent r.v.'s.
- Count up the number N_H of darts that fall in the area, i.e., for which $Y_i \leq g(X_i)$.
- Proportionately, $\frac{\int_a^b g(x) dx}{A} \approx \frac{N_H}{N}$, so we have $\int_a^b g(x) dx \approx \frac{N_H}{N} A$.

Example Calculation

Carry out the following steps in Matlab

```
> help rand
> format
> rand('seed',0)
> A = 3
> N = 10
> X = rand(N,1);
> Y = (3-0)*rand(N,1);
> hits = sum(Y <= exp(X))
> area = A*(hits/N)
> Itrue = exp(1)-1 % now try to improve accuracy
```