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A European call option has strike price $54 on a stock with current
price $50, expires in five months, and the risk-free rate is 7%. Its
current price is $2.85. What is the implied volatility?

Solution. We have a standard formula for this situation that is
stored in the function bseurcall. Get help on it and use
bseurcall to set up an anonymous function of o using which
equals zero when the correct o is used.



BT 3.4: Solving Nonlinear Systems Univariate Problems
Multivariate Problems

Nonlinear Optimization for Univariate Functions

Basic Problem:

Given a function f (x), find real number x* with f (x*) = min f (x)
over a range of x values. How do we find a solution (if it exists)?

help fminbnd

fminbnd (myfcn,0,3)
[x,y,exitflag,output]=fminbnd(@(x) x-2*sin(x),0,3)
x = 0:.01:3;

plot (x, x-2#sin(x))
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Nonlinear Optimization for Univariate Functions

Basic Problem:

Given a function f (x), find real number x* with f (x*) = min f (x)
over a range of x values. How do we find a solution (if it exists)?
@ We could solve the equation ' (x) = 0 using ideas of root
finding above. Why does this help?

o Matlab has a built-in command fminbnd that does not use
derivative information, but a “bracketing” procedure.

help fminbnd

fminbnd (myfcn,0,3)
[x,y,exitflag,output]=fminbnd(@(x) x-2*sin(x),0,3)
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Nonlinear Optimization for Univariate Functions

Basic Problem:

Given a function f (x), find real number x* with f (x*) = min f (x)
over a range of x values. How do we find a solution (if it exists)?
@ We could solve the equation ' (x) = 0 using ideas of root
finding above. Why does this help?

o Matlab has a built-in command fminbnd that does not use
derivative information, but a “bracketing” procedure.

@ Use Matlab to minimize f (x) = x — 25sin (x) on interval [0, 3].

help fminbnd

fminbnd (myfcn,0,3)
[x,y,exitflag,output]=fminbnd(@(x) x-2*sin(x),0,3)
x = 0:.01:3;

plot (x, x-2#sin(x))
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Multivariate Nonlinear Optimization

Basic Problem:

Given a scalar valued function f (x1,x2,...,x,) = f (x), find vector
x* with f (x*) = min f (x) over a range of x values. How do we find
a solution (given that there is one)?




Multivariate Nonlinear Optimization

Basic Problem:

Given a scalar valued function f (x1,x2,...,x,) = f (x), find vector
x* with f (x*) = min f (x) over a range of x values. How do we find
a solution (given that there is one)?

@ Many techniques exist (all of Chapter 6!)
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Basic Problem:

Given a scalar valued function f (x1,x2,...,x,) = f (x), find vector
x* with f (x*) = min f (x) over a range of x values. How do we find
a solution (given that there is one)?

@ Many techniques exist (all of Chapter 6!)

@ Although this is not efficient, theoretically one can turn every
root finding problem into an optimization problem: to solve
the vector equation f (x) = 0 for x, simply find the x* that
minimizes the scalar function g (x) = ||f (x)[|%. If g (x*) =0,
then f (x*) = 0. So optimization is a more general problem
than rootfinding.




Multivariate Nonlinear Optimization

Basic Problem:

Given a scalar valued function f (x1,x2,...,x,) = f (x), find vector
x* with f (x*) = min f (x) over a range of x values. How do we find
a solution (given that there is one)?

@ Many techniques exist (all of Chapter 6!)

@ Although this is not efficient, theoretically one can turn every
root finding problem into an optimization problem: to solve
the vector equation f (x) = 0 for x, simply find the x* that
minimizes the scalar function g (x) = ||f (x)[|%. If g (x*) =0,
then f (x*) = 0. So optimization is a more general problem
than rootfinding.

o Matlab does provide a multivariate solver called fminsearch.
Get help on it and use it to solve the example on the next
slide. Try different starting points.




Example Calculations

Start by writing out what the function f : R? — R? defined below
actually represents.

f =0(x) [x(1)~2 - 10*xx(1) + x(2)"3 + 8;
x(D*x(2)~2 + x(1) - 10*x(2) + 8]

g = 0(x) norm(f(x))~2

help fminsearch

fminsearch(g, [0;0])

f (ans)

fminsearch(g, [2;3])

f (ans)
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Chapter 4: Numerical Integration: Deterministic and Monte BT 4.2: Monte Carlo Integration

Numerical Integration

Basic Proble

To calculate the definite integral | = / f (x) dx approximately

a
when analytical methods fail us. Divide interval [a, b] into N equal
subintervals by nodes xg, x1, ..., xy and width dx = (b — a) /N:
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To calculate the definite integral | = / f (x) dx approximately

a
when analytical methods fail us. Divide interval [a, b] into N equal
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Numerical Integration

Basic Problem:

To calculate the definite integral | = / f (x) dx approximately

a
when analytical methods fail us. Divide interval [a, b] into N equal
subintervals by nodes xg, x1, ..., xy and width dx = (b — a) /N:

N—1
o Left Riemann sums: | ~ dx Z f(xj)
=0

N
e Right Riemann sums: | =~ dxz f (xj). Average left/right:
j=1
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Numerical Integration

Basic Problem:

To calculate the definite integral | = / f (x) dx approximately

a
when analytical methods fail us. Divide interval [a, b] into N equal
subintervals by nodes xg, x1, ..., xy and width dx = (b — a) /N:

o Left Riemann sums: | ~ dx Z f(xj)

N
e Right Riemann sums: | =~ dxz f (xj). Average left/right:
j=1
dx N—1
o Trapezoidal: | ~ el )+ Z f(x)+f(xn)

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



Another Numerical Integration

Basic Problem:

To calculate the definite integral | = w(x)f (x) dx

\|

a
approximately when analytical methods fail us. Here w (x) is a
nonnegative “weight” function and either a or b could be infinite.
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j=1
certain nodes on a fixed reference interval and wq, ..., wy are

“weights”, both of which are computed for once and for all.
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Another Numerical Integration

Basic Problem:

To calculate the definite integral | = w(x)f (x) dx

\|

a
approximately when analytical methods fail us. Here w (x) is a
nonnegative “weight” function and either a or b could be infinite.

N
@ Motivating formula: | ~ E wif (x;j), where x1,...,xy are
j=1
certain nodes on a fixed reference interval and wq, ..., wy are

“weights”, both of which are computed for once and for all.

@ Any other integral can be mapped to the reference interval by

a simple change of variables.
1

o A classical example (Gaussian quadrature): | = / 17 (x) dx
1

@ Another classic (Gauss-Hermite quadrature, text, p. 216):

I:/ e_xzf(x) dx .

—00




Matlab uses an adaptive Simpson rule, which involves estimating
the function as a quadratic over two subintervals, and using error
estimates to determine if the current approximation is good
enough. If not, subintervals are further subdivided.

f = @(x) chis_pdf (x,8)

format long

N = 40

dx = (4-0)/N

x = linspace(0,4,N+1);

y = f(x);

Itrue = chis_cdf(4,8)

IMatlab = quad(f,0,4)

Irl = dx*sum(f(x(1:N)))

Irr = dx*sum(f(x(2:N+1)))

Itrap = 0.5%(Irl+Irr)

edit GaussInt % don’t change, just look under the hood
IGquad = GaussInt(f,[0,4],3) % try more nodes, up to 8
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The Basic Idea

Monte Carlo Simulation:

@ Create a quantitative model of a process.
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Monte Carlo Simulation:
@ Create a quantitative model of a process.

@ Treat the events that constitute the process as random.
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The Basic Idea

Monte Carlo Simulation:

@ Create a quantitative model of a process.

@ Treat the events that constitute the process as random.
@ Generate random variables to simulate the events.
°

Use these values to compute the outcome of the process.
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The Basic Idea

Monte Carlo Simulation:

@ Create a quantitative model of a process.

@ Treat the events that constitute the process as random.
@ Generate random variables to simulate the events.
°

Use these values to compute the outcome of the process.

A Guiding Example is Monte Carlo Integration:

We want to approximate fabg (x) dx. For convenience, assume
g (x) > 0, so that this integral represents (positive) area. Let's use
fol e¥dx = e — 1~ 1.7183 as a test case.
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Monte Carlo Integration

Hit or Miss Monte Carlo Method:

@ Enclose the graph in a box of known area A (in our test case,
0<x<1,0<y<3 s0A=3)
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Monte Carlo Integration

Hit or Miss Monte Carlo Method:

@ Enclose the graph in a box of known area A (in our test case,
0<x<1,0<y<3 s0A=3)

@ Throw N random darts at the area, uniformly distributed in x
and y directions. Note: the event of a dart throw is
represented by a random pair (X;, Y;) of independent r.v.’s.
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Monte Carlo Integration

Hit or Miss Monte Carlo Method:

@ Enclose the graph in a box of known area A (in our test case,
0<x<1,0<y<3 s0A=3)

@ Throw N random darts at the area, uniformly distributed in x
and y directions. Note: the event of a dart throw is
represented by a random pair (X;, Y;) of independent r.v.’s.

@ Count up the number Ny of darts that fall in the area, i.e., for
which Y; < g (Xj).
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Monte Carlo Integration

Hit or Miss Monte Carlo Method:

@ Enclose the graph in a box of known area A (in our test case,
0<x<1,0<y<3 s0A=3)

@ Throw N random darts at the area, uniformly distributed in x
and y directions. Note: the event of a dart throw is
represented by a random pair (X;, Y;) of independent r.v.’s.

@ Count up the number Ny of darts that fall in the area, i.e., for
which Y; < g (Xj).

b
d N
@ Proportionately, fag(AX)X ~ WH so we have
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Example Calculation

Carry out the following steps in Matlab

help rand

format

rand(’seed’,0)

A=3

N = 10

X = rand(N,1);

Y (3-0)*rand(N,1);

hits = sum(Y <= exp(X))

area = Ax(hits/N)

Itrue = exp(1)-1 % now try to improve accuracy
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