
BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

JDEP 384H: Numerical Methods in Business

Instructor: Thomas Shores

Department of Mathematics

Lecture 18, February 22, 2007

110 Kaufmann Center

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Outline

1 BT 3.1: Basics of Numerical Analysis

Finite Precision Representation

Error Analysis

2 BT 3.2: Linear Systems

Direct Methods

Iterative Methods

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Finite Precision Representation
Error Analysis

Outline

1 BT 3.1: Basics of Numerical Analysis

Finite Precision Representation

Error Analysis

2 BT 3.2: Linear Systems

Direct Methods

Iterative Methods

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Finite Precision Representation
Error Analysis

Outline

1 BT 3.1: Basics of Numerical Analysis

Finite Precision Representation

Error Analysis

2 BT 3.2: Linear Systems

Direct Methods

Iterative Methods

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



Examples

Example

(Example 7 of NumericalAnalysisNotes) Let pn = 1/3n,
n = 0, 1, 2, . . .. This sequence obeys the rule pn+1 = pn−1 − 8

3
pn

with p0 = 1 and p1 = 1/3. Similarly, we see that pn+1 = 1

3
pn with

p0 = 1. Use Matlab to plot the sequence {pn}50n=0
directly, and

then using the above recursion algorithms with p0 and p1 given and

overlay the plot of those results. Repeat the plot with the last 11 of

the points.

>N=50

>p1 = (1/3).^(0:N);

>p2 = p1; p3 = p1;

>for n = 1:N,p2(n+1) = (1/3)*p2(n);end

>for n = 2:N,p3(n+1) = p3(n-1)-8/3*p3(n);end

>plot([p1',p2',p3'])

>plot([p1(N-11:N)',p2(N-11:N)',p3(N-11:N)'])



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Direct Methods
Iterative Methods

Outline

1 BT 3.1: Basics of Numerical Analysis

Finite Precision Representation

Error Analysis

2 BT 3.2: Linear Systems

Direct Methods

Iterative Methods

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Direct Methods
Iterative Methods

Direct Methods

The problem: Solve the n × n linear system Ax = b.

Direct Method:

A well de�ned �nite sequence of algebraic operations that produces

the solution (accepting that there may be loss of accuracy due to

�oating point error and system sensitivity.) Most direct methods

rely on reducing system to a triangular system of equations, then

back solving.

The condition number of the coe�cient matrix,

cond (A) = ‖A‖
∥∥A−1∥∥is a good indicator of how sensitive the

system is to errors in calculation.

Fact: If the system A (x + δx) = b + δb is solved instead of

Ax = b, then ‖δx‖
‖x‖ ≤ cond (A) ‖δb‖‖b‖

Heuristic: in solving Ax = b we can lose as many as

log10 (cond (A))signi�cant digits.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Direct Methods
Iterative Methods

Direct Methods

The problem: Solve the n × n linear system Ax = b.

Direct Method:

A well de�ned �nite sequence of algebraic operations that produces

the solution (accepting that there may be loss of accuracy due to

�oating point error and system sensitivity.) Most direct methods

rely on reducing system to a triangular system of equations, then

back solving.

The condition number of the coe�cient matrix,

cond (A) = ‖A‖
∥∥A−1∥∥is a good indicator of how sensitive the

system is to errors in calculation.

Fact: If the system A (x + δx) = b + δb is solved instead of

Ax = b, then ‖δx‖
‖x‖ ≤ cond (A) ‖δb‖‖b‖

Heuristic: in solving Ax = b we can lose as many as

log10 (cond (A))signi�cant digits.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Direct Methods
Iterative Methods

Direct Methods

The problem: Solve the n × n linear system Ax = b.

Direct Method:

A well de�ned �nite sequence of algebraic operations that produces

the solution (accepting that there may be loss of accuracy due to

�oating point error and system sensitivity.) Most direct methods

rely on reducing system to a triangular system of equations, then

back solving.

The condition number of the coe�cient matrix,

cond (A) = ‖A‖
∥∥A−1∥∥is a good indicator of how sensitive the

system is to errors in calculation.

Fact: If the system A (x + δx) = b + δb is solved instead of

Ax = b, then ‖δx‖
‖x‖ ≤ cond (A) ‖δb‖‖b‖

Heuristic: in solving Ax = b we can lose as many as

log10 (cond (A))signi�cant digits.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Direct Methods
Iterative Methods

Direct Methods

The problem: Solve the n × n linear system Ax = b.

Direct Method:

A well de�ned �nite sequence of algebraic operations that produces

the solution (accepting that there may be loss of accuracy due to

�oating point error and system sensitivity.) Most direct methods

rely on reducing system to a triangular system of equations, then

back solving.

The condition number of the coe�cient matrix,

cond (A) = ‖A‖
∥∥A−1∥∥is a good indicator of how sensitive the

system is to errors in calculation.

Fact: If the system A (x + δx) = b + δb is solved instead of

Ax = b, then ‖δx‖
‖x‖ ≤ cond (A) ‖δb‖‖b‖

Heuristic: in solving Ax = b we can lose as many as

log10 (cond (A))signi�cant digits.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



Matlab Knows Direct Methods

Example

Set up this system at the board and solve it directly and using

Matlab.
x1 + x2 + x3 = 4

2x1 + 2x2 − x3 = 5

4x1 + 6x2 + 8x3 = 24

Direct Method:

If the system has a unique solution (which is the only kind of

system we are dealing with), then the coe�cient matrix is

invertible, which is equivalent to having nonzero determinant.

Verify this with the above example.

A more reliable indicator of potential problems (sensitive

matrix, nearly singular matrix) is the condition number. Check

this example and various Hilbert matrices in Matlab.



Matlab Knows Direct Methods

Example

Set up this system at the board and solve it directly and using

Matlab.
x1 + x2 + x3 = 4

2x1 + 2x2 − x3 = 5

4x1 + 6x2 + 8x3 = 24

Direct Method:

If the system has a unique solution (which is the only kind of

system we are dealing with), then the coe�cient matrix is

invertible, which is equivalent to having nonzero determinant.

Verify this with the above example.

A more reliable indicator of potential problems (sensitive

matrix, nearly singular matrix) is the condition number. Check

this example and various Hilbert matrices in Matlab.



Matlab Knows Direct Methods

Example

Set up this system at the board and solve it directly and using

Matlab.
x1 + x2 + x3 = 4

2x1 + 2x2 − x3 = 5

4x1 + 6x2 + 8x3 = 24

Direct Method:

If the system has a unique solution (which is the only kind of

system we are dealing with), then the coe�cient matrix is

invertible, which is equivalent to having nonzero determinant.

Verify this with the above example.

A more reliable indicator of potential problems (sensitive

matrix, nearly singular matrix) is the condition number. Check

this example and various Hilbert matrices in Matlab.



Matlab Knows Direct Methods

Example

Set up this system at the board and solve it directly and using

Matlab.
x1 + x2 + x3 = 4

2x1 + 2x2 − x3 = 5

4x1 + 6x2 + 8x3 = 24

Direct Method:

If the system has a unique solution (which is the only kind of

system we are dealing with), then the coe�cient matrix is

invertible, which is equivalent to having nonzero determinant.

Verify this with the above example.

A more reliable indicator of potential problems (sensitive

matrix, nearly singular matrix) is the condition number. Check

this example and various Hilbert matrices in Matlab.



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Direct Methods
Iterative Methods

Outline

1 BT 3.1: Basics of Numerical Analysis

Finite Precision Representation

Error Analysis

2 BT 3.2: Linear Systems

Direct Methods

Iterative Methods

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Direct Methods
Iterative Methods

Iterative Methods

Basic Idea:

Rather than compute a solution x directly, �nd an easy to compute

iteration scheme that yields a sequence x(k) of approximations that

converge to the solution x.

Most common form is �xed point iteration: put the problem in

the form x = G (x) and then iterate with initial guess x(0) and

iterates x(k) given by x(k+1) = G
(
x(k)

)
.

If the scheme works, the iterative scheme is convergent,

otherwise it is divergent.

�Convergent� means that limk→∞x(k) = x∗, the desired

solution for which x∗ = G (x∗).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Direct Methods
Iterative Methods

Iterative Methods

Basic Idea:

Rather than compute a solution x directly, �nd an easy to compute

iteration scheme that yields a sequence x(k) of approximations that

converge to the solution x.

Most common form is �xed point iteration: put the problem in

the form x = G (x) and then iterate with initial guess x(0) and

iterates x(k) given by x(k+1) = G
(
x(k)

)
.

If the scheme works, the iterative scheme is convergent,

otherwise it is divergent.

�Convergent� means that limk→∞x(k) = x∗, the desired

solution for which x∗ = G (x∗).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Direct Methods
Iterative Methods

Iterative Methods

Basic Idea:

Rather than compute a solution x directly, �nd an easy to compute

iteration scheme that yields a sequence x(k) of approximations that

converge to the solution x.

Most common form is �xed point iteration: put the problem in

the form x = G (x) and then iterate with initial guess x(0) and

iterates x(k) given by x(k+1) = G
(
x(k)

)
.

If the scheme works, the iterative scheme is convergent,

otherwise it is divergent.

�Convergent� means that limk→∞x(k) = x∗, the desired

solution for which x∗ = G (x∗).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Direct Methods
Iterative Methods

Iterative Methods

Basic Idea:

Rather than compute a solution x directly, �nd an easy to compute

iteration scheme that yields a sequence x(k) of approximations that

converge to the solution x.

Most common form is �xed point iteration: put the problem in

the form x = G (x) and then iterate with initial guess x(0) and

iterates x(k) given by x(k+1) = G
(
x(k)

)
.

If the scheme works, the iterative scheme is convergent,

otherwise it is divergent.

�Convergent� means that limk→∞x(k) = x∗, the desired

solution for which x∗ = G (x∗).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



Examples

Example

Find the (unique) real root to the cubic

x3 − x − 6 = 0.

Solution. Try two �splittings�:

x = G (x) ≡ x3 − 6 and x = G (x) ≡ (6 + x)1/3 .

These yield iterations of the form

x (k+1) =
(
x (k)

)3

− 6 and x (k+1) =
(
6 + x (k)

)1/3

and are easily done by hand in Matlab. Simply cursor up and repeat

the second line inde�nitely to to the second one, e.g.:
> x = 0 % initial guess

> x = (6+x)^(1/3)



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Direct Methods
Iterative Methods

Iterative Methods for Linear Systems

Splitting:

A general procedure for developing iterations to solve Ax = b:

First write A = B − C , where solving By = d for y is easy.

Rewrite the system as (B − C ) x = b, i.e., Bx = Cx + b.

Or x = B−1 (Cx + b) = B−1Cx + B−1b = Gx + d.

Now iterate on x(k+1) = Gx(k) + d.

Notation: spectral radius of matrix G is ρ (G ), the maximum

absolute value of any eigenvalue of G .

Key Theorem: If ρ (G ) < 1, or ρ (G ) = 1 with exactly one

eigenvalue equal 1 and the others smaller than 1, then the

iterative method x(k+1) = Gx(k) + d is guaranteed to

converge; however, if ρ (G ) > 1, method is guaranteed to

diverge for nearly all initial x(0).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Direct Methods
Iterative Methods

Iterative Methods for Linear Systems

Splitting:

A general procedure for developing iterations to solve Ax = b:

First write A = B − C , where solving By = d for y is easy.

Rewrite the system as (B − C ) x = b, i.e., Bx = Cx + b.

Or x = B−1 (Cx + b) = B−1Cx + B−1b = Gx + d.

Now iterate on x(k+1) = Gx(k) + d.

Notation: spectral radius of matrix G is ρ (G ), the maximum

absolute value of any eigenvalue of G .

Key Theorem: If ρ (G ) < 1, or ρ (G ) = 1 with exactly one

eigenvalue equal 1 and the others smaller than 1, then the

iterative method x(k+1) = Gx(k) + d is guaranteed to

converge; however, if ρ (G ) > 1, method is guaranteed to

diverge for nearly all initial x(0).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Direct Methods
Iterative Methods

Iterative Methods for Linear Systems

Splitting:

A general procedure for developing iterations to solve Ax = b:

First write A = B − C , where solving By = d for y is easy.

Rewrite the system as (B − C ) x = b, i.e., Bx = Cx + b.

Or x = B−1 (Cx + b) = B−1Cx + B−1b = Gx + d.

Now iterate on x(k+1) = Gx(k) + d.

Notation: spectral radius of matrix G is ρ (G ), the maximum

absolute value of any eigenvalue of G .

Key Theorem: If ρ (G ) < 1, or ρ (G ) = 1 with exactly one

eigenvalue equal 1 and the others smaller than 1, then the

iterative method x(k+1) = Gx(k) + d is guaranteed to

converge; however, if ρ (G ) > 1, method is guaranteed to

diverge for nearly all initial x(0).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Direct Methods
Iterative Methods

Iterative Methods for Linear Systems

Splitting:

A general procedure for developing iterations to solve Ax = b:

First write A = B − C , where solving By = d for y is easy.

Rewrite the system as (B − C ) x = b, i.e., Bx = Cx + b.

Or x = B−1 (Cx + b) = B−1Cx + B−1b = Gx + d.

Now iterate on x(k+1) = Gx(k) + d.

Notation: spectral radius of matrix G is ρ (G ), the maximum

absolute value of any eigenvalue of G .

Key Theorem: If ρ (G ) < 1, or ρ (G ) = 1 with exactly one

eigenvalue equal 1 and the others smaller than 1, then the

iterative method x(k+1) = Gx(k) + d is guaranteed to

converge; however, if ρ (G ) > 1, method is guaranteed to

diverge for nearly all initial x(0).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Direct Methods
Iterative Methods

Iterative Methods for Linear Systems

Splitting:

A general procedure for developing iterations to solve Ax = b:

First write A = B − C , where solving By = d for y is easy.

Rewrite the system as (B − C ) x = b, i.e., Bx = Cx + b.

Or x = B−1 (Cx + b) = B−1Cx + B−1b = Gx + d.

Now iterate on x(k+1) = Gx(k) + d.

Notation: spectral radius of matrix G is ρ (G ), the maximum

absolute value of any eigenvalue of G .

Key Theorem: If ρ (G ) < 1, or ρ (G ) = 1 with exactly one

eigenvalue equal 1 and the others smaller than 1, then the

iterative method x(k+1) = Gx(k) + d is guaranteed to

converge; however, if ρ (G ) > 1, method is guaranteed to

diverge for nearly all initial x(0).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Direct Methods
Iterative Methods

Iterative Methods for Linear Systems

Splitting:

A general procedure for developing iterations to solve Ax = b:

First write A = B − C , where solving By = d for y is easy.

Rewrite the system as (B − C ) x = b, i.e., Bx = Cx + b.

Or x = B−1 (Cx + b) = B−1Cx + B−1b = Gx + d.

Now iterate on x(k+1) = Gx(k) + d.

Notation: spectral radius of matrix G is ρ (G ), the maximum

absolute value of any eigenvalue of G .

Key Theorem: If ρ (G ) < 1, or ρ (G ) = 1 with exactly one

eigenvalue equal 1 and the others smaller than 1, then the

iterative method x(k+1) = Gx(k) + d is guaranteed to

converge; however, if ρ (G ) > 1, method is guaranteed to

diverge for nearly all initial x(0).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

Direct Methods
Iterative Methods

Iterative Methods for Linear Systems

Splitting:

A general procedure for developing iterations to solve Ax = b:

First write A = B − C , where solving By = d for y is easy.

Rewrite the system as (B − C ) x = b, i.e., Bx = Cx + b.

Or x = B−1 (Cx + b) = B−1Cx + B−1b = Gx + d.

Now iterate on x(k+1) = Gx(k) + d.

Notation: spectral radius of matrix G is ρ (G ), the maximum

absolute value of any eigenvalue of G .

Key Theorem: If ρ (G ) < 1, or ρ (G ) = 1 with exactly one

eigenvalue equal 1 and the others smaller than 1, then the

iterative method x(k+1) = Gx(k) + d is guaranteed to

converge; however, if ρ (G ) > 1, method is guaranteed to

diverge for nearly all initial x(0).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



Examples

Some Classical Splittings:

Write A = L(ower) + D(iagonal) + U(pper)

Jacobi: Dx = − (L + U) x + b, so

x(k+1) = −D−1 (L + U) x(k) + D−1b.

Gauss-Seidel: (L + D) x = −Ux + b, so

x(k+1) = − (L + D)−1 Ux(k) + (L + D)−1 b.

SOR: Given any iteration scheme x(k+1) = Gx(k) + d, speed it

up by x(k+1) = ω
(
Gx(k) + d

)
+ (1− ω)d, with 0 < ω < 2.

(What does ω = 1 give?)

Let's try these on the example system given earlier, then check

spectral radius of each iteration matrix. Smaller spectral radius

means faster convergence.



Examples

Some Classical Splittings:

Write A = L(ower) + D(iagonal) + U(pper)

Jacobi: Dx = − (L + U) x + b, so

x(k+1) = −D−1 (L + U) x(k) + D−1b.

Gauss-Seidel: (L + D) x = −Ux + b, so

x(k+1) = − (L + D)−1 Ux(k) + (L + D)−1 b.

SOR: Given any iteration scheme x(k+1) = Gx(k) + d, speed it

up by x(k+1) = ω
(
Gx(k) + d

)
+ (1− ω)d, with 0 < ω < 2.

(What does ω = 1 give?)

Let's try these on the example system given earlier, then check

spectral radius of each iteration matrix. Smaller spectral radius

means faster convergence.



Examples

Some Classical Splittings:

Write A = L(ower) + D(iagonal) + U(pper)

Jacobi: Dx = − (L + U) x + b, so

x(k+1) = −D−1 (L + U) x(k) + D−1b.

Gauss-Seidel: (L + D) x = −Ux + b, so

x(k+1) = − (L + D)−1 Ux(k) + (L + D)−1 b.

SOR: Given any iteration scheme x(k+1) = Gx(k) + d, speed it

up by x(k+1) = ω
(
Gx(k) + d

)
+ (1− ω)d, with 0 < ω < 2.

(What does ω = 1 give?)

Let's try these on the example system given earlier, then check

spectral radius of each iteration matrix. Smaller spectral radius

means faster convergence.



Examples

Some Classical Splittings:

Write A = L(ower) + D(iagonal) + U(pper)

Jacobi: Dx = − (L + U) x + b, so

x(k+1) = −D−1 (L + U) x(k) + D−1b.

Gauss-Seidel: (L + D) x = −Ux + b, so

x(k+1) = − (L + D)−1 Ux(k) + (L + D)−1 b.

SOR: Given any iteration scheme x(k+1) = Gx(k) + d, speed it

up by x(k+1) = ω
(
Gx(k) + d

)
+ (1− ω)d, with 0 < ω < 2.

(What does ω = 1 give?)

Let's try these on the example system given earlier, then check

spectral radius of each iteration matrix. Smaller spectral radius

means faster convergence.



Examples

Some Classical Splittings:

Write A = L(ower) + D(iagonal) + U(pper)

Jacobi: Dx = − (L + U) x + b, so

x(k+1) = −D−1 (L + U) x(k) + D−1b.

Gauss-Seidel: (L + D) x = −Ux + b, so

x(k+1) = − (L + D)−1 Ux(k) + (L + D)−1 b.

SOR: Given any iteration scheme x(k+1) = Gx(k) + d, speed it

up by x(k+1) = ω
(
Gx(k) + d

)
+ (1− ω)d, with 0 < ω < 2.

(What does ω = 1 give?)

Let's try these on the example system given earlier, then check

spectral radius of each iteration matrix. Smaller spectral radius

means faster convergence.


	BT 3.1: Basics of Numerical Analysis
	Finite Precision Representation
	Error Analysis

	BT 3.2: Linear Systems
	Direct Methods
	Iterative Methods


