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Examples

Example

(Example 7 of NumericalAnalysisNotes) Let pn = 1/3n,
n = 0, 1, 2, . . .. This sequence obeys the rule pn+1 = pn−1 − 8

3
pn

with p0 = 1 and p1 = 1/3. Similarly, we see that pn+1 = 1

3
pn with

p0 = 1. Use Matlab to plot the sequence {pn}50n=0
directly, and

then using the above recursion algorithms with p0 and p1 given and

overlay the plot of those results. Repeat the plot with the last 11 of

the points.

>N=50

>p1 = (1/3).^(0:N);

>p2 = p1; p3 = p1;

>for n = 1:N,p2(n+1) = (1/3)*p2(n);end

>for n = 2:N,p3(n+1) = p3(n-1)-8/3*p3(n);end

>plot([p1',p2',p3'])

>plot([p1(N-11:N)',p2(N-11:N)',p3(N-11:N)'])
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Direct Methods

The problem: Solve the n × n linear system Ax = b.

Direct Method:

A well de�ned �nite sequence of algebraic operations that produces

the solution (accepting that there may be loss of accuracy due to

�oating point error and system sensitivity.) Most direct methods

rely on reducing system to a triangular system of equations, then

back solving.

The condition number of the coe�cient matrix,

cond (A) = ‖A‖
∥∥A−1∥∥is a good indicator of how sensitive the

system is to errors in calculation.

Fact: If the system A (x + δx) = b + δb is solved instead of

Ax = b, then ‖δx‖
‖x‖ ≤ cond (A) ‖δb‖‖b‖

Heuristic: in solving Ax = b we can lose as many as

log10 (cond (A))signi�cant digits.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business
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Matlab Knows Direct Methods

Example

Set up this system at the board and solve it directly and using

Matlab.
x1 + x2 + x3 = 4

2x1 + 2x2 − x3 = 5

4x1 + 6x2 + 8x3 = 24

Direct Method:

If the system has a unique solution (which is the only kind of

system we are dealing with), then the coe�cient matrix is

invertible, which is equivalent to having nonzero determinant.

Verify this with the above example.

A more reliable indicator of potential problems (sensitive

matrix, nearly singular matrix) is the condition number. Check

this example and various Hilbert matrices in Matlab.
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Iterative Methods

Basic Idea:

Rather than compute a solution x directly, �nd an easy to compute

iteration scheme that yields a sequence x(k) of approximations that

converge to the solution x.

Most common form is �xed point iteration: put the problem in

the form x = G (x) and then iterate with initial guess x(0) and

iterates x(k) given by x(k+1) = G
(
x(k)

)
.

If the scheme works, the iterative scheme is convergent,

otherwise it is divergent.

�Convergent� means that limk→∞x(k) = x∗, the desired

solution for which x∗ = G (x∗).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business
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Examples

Example

Find the (unique) real root to the cubic

x3 − x − 6 = 0.

Solution. Try two �splittings�:

x = G (x) ≡ x3 − 6 and x = G (x) ≡ (6 + x)1/3 .

These yield iterations of the form

x (k+1) =
(
x (k)

)3

− 6 and x (k+1) =
(
6 + x (k)

)1/3

and are easily done by hand in Matlab. Simply cursor up and repeat

the second line inde�nitely to to the second one, e.g.:
> x = 0 % initial guess

> x = (6+x)^(1/3)
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Iterative Methods for Linear Systems

Splitting:

A general procedure for developing iterations to solve Ax = b:

First write A = B − C , where solving By = d for y is easy.

Rewrite the system as (B − C ) x = b, i.e., Bx = Cx + b.

Or x = B−1 (Cx + b) = B−1Cx + B−1b = Gx + d.

Now iterate on x(k+1) = Gx(k) + d.

Notation: spectral radius of matrix G is ρ (G ), the maximum

absolute value of any eigenvalue of G .

Key Theorem: If ρ (G ) < 1, or ρ (G ) = 1 with exactly one

eigenvalue equal 1 and the others smaller than 1, then the

iterative method x(k+1) = Gx(k) + d is guaranteed to

converge; however, if ρ (G ) > 1, method is guaranteed to

diverge for nearly all initial x(0).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business
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Examples

Some Classical Splittings:

Write A = L(ower) + D(iagonal) + U(pper)

Jacobi: Dx = − (L + U) x + b, so

x(k+1) = −D−1 (L + U) x(k) + D−1b.

Gauss-Seidel: (L + D) x = −Ux + b, so

x(k+1) = − (L + D)−1 Ux(k) + (L + D)−1 b.

SOR: Given any iteration scheme x(k+1) = Gx(k) + d, speed it

up by x(k+1) = ω
(
Gx(k) + d

)
+ (1− ω)d, with 0 < ω < 2.

(What does ω = 1 give?)

Let's try these on the example system given earlier, then check

spectral radius of each iteration matrix. Smaller spectral radius

means faster convergence.
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