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Error Terminology

Error De�nitions:

Suppose the exact quantity that we want to estimate is xT and we

end up calculating the quantity xA.

Absolute error of our calculation is

Error(xA) = |xA − xT |

Relative error is

Rel(xA) =
|xA − xT |
|xT |

,

provided xT 6= 0.
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Error Terminology

An Application:

Signi�cant digits.

We say xA has m signi�cant digits with respect to xT if m is

the largest nonnegative integer for which

Rel(xA) =
|xA − xT |
|xT |

≤ 5× 10−m.

Use the de�nition to answer this question: xA = 25.489 has

how many signi�cant digits with respect to xT = 25.482.

Subtraction of nearly equal quantities can cause catastrophic

loss of signi�cance digits. Addition of them does not cause

such a loss.
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Vector Error?

Vector Error De�nitions:

Suppose the exact quantity that we want to estimate is xT and we

end up calculating the quantity xA. Choose a vector norm ‖·‖
Absolute error of our calculation is

Error(xA) = ‖xA − xT‖

Relative error is

Rel(xA) =
‖xA − xT‖
‖xT‖

,

provided ‖xT‖ 6= 0.
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Big Oh Notation

De�nition:

Function f (x) is big oh of g(x) as x → a if there exists a positive

number M such that for x su�ciently near to a, |f (x)| ≤ M |g(x)| .
For approximating derivatives:

f ′(x) =
f (x + h)− f (x)

h
+O (h) , h → 0,

For approximating derivatives:

f ′(x) =
f (x + h)− f (x − h)

2h
+O

(
h2

)
, h → 0.

If Gaussian elimination is used to solve Ax = b, A an n × n

matrix, then the number of �ops needed is a measure of the

complexity of this polynomial time algorithm:

2

3
n3 + an2 + bn + d =

2

3
n3 + l.o.t. = O

(
n3

)
, n →∞.
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Sources of Error

A Catalogue:

Inaccurate model: Implied volatility observations suggest

that Black-Scholes might not be entirely accurate. Hence, no

matter how re�ned we make our calculations, we can expect

some error when we compare to reality.

Inaccurate data: solve a Black-Scholes equation with

r = 0.065 instead of the correct r = 0.06. Nothing we do

short of getting exact data will save us from error. In

computer science, the principle is GIGO.

Blunders: both hardware and software. Hardware problems

are relatively rare nowadays, but software errors �ourish.

Machine error: rounding error and the error of �nite precision

�oating point computation as in our �rst few examples.
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Sources of Error

Catalogue (continued):

Mathematical truncation: consider the formula

f ′(x) =
f (x + h)− f (x − h)

2h
, for h > 0.

No matter how small we make h, we will not get the exact

answer because mathematically the formula is not an exact

equality. This is a bit like �mathematical roundo�.�

Algorithmic instability: we'll see an example of this in

Example 7, where we compute the sequence 1/3n by a stable

algorithm and an unstable algorithm. The problem is not in

the sequence itself, but how we try to compute it. This is also

an example of error propagation.

Mathematical instability: this is more subtle. In Example 5

we see the problem is not with algorithms for solving linear

systems. It's deeper than that, because the Hilbert matrix

itself is extremely sensitive to change



Sources of Error

Catalogue (continued):

Mathematical truncation: consider the formula

f ′(x) =
f (x + h)− f (x − h)

2h
, for h > 0.

No matter how small we make h, we will not get the exact

answer because mathematically the formula is not an exact

equality. This is a bit like �mathematical roundo�.�

Algorithmic instability: we'll see an example of this in

Example 7, where we compute the sequence 1/3n by a stable

algorithm and an unstable algorithm. The problem is not in

the sequence itself, but how we try to compute it. This is also

an example of error propagation.

Mathematical instability: this is more subtle. In Example 5

we see the problem is not with algorithms for solving linear

systems. It's deeper than that, because the Hilbert matrix

itself is extremely sensitive to change



Sources of Error

Catalogue (continued):

Mathematical truncation: consider the formula

f ′(x) =
f (x + h)− f (x − h)

2h
, for h > 0.

No matter how small we make h, we will not get the exact

answer because mathematically the formula is not an exact

equality. This is a bit like �mathematical roundo�.�

Algorithmic instability: we'll see an example of this in

Example 7, where we compute the sequence 1/3n by a stable

algorithm and an unstable algorithm. The problem is not in

the sequence itself, but how we try to compute it. This is also

an example of error propagation.

Mathematical instability: this is more subtle. In Example 5

we see the problem is not with algorithms for solving linear

systems. It's deeper than that, because the Hilbert matrix

itself is extremely sensitive to change



Sources of Error

Catalogue (continued):

Mathematical truncation: consider the formula

f ′(x) =
f (x + h)− f (x − h)

2h
, for h > 0.

No matter how small we make h, we will not get the exact

answer because mathematically the formula is not an exact

equality. This is a bit like �mathematical roundo�.�

Algorithmic instability: we'll see an example of this in

Example 7, where we compute the sequence 1/3n by a stable

algorithm and an unstable algorithm. The problem is not in

the sequence itself, but how we try to compute it. This is also

an example of error propagation.

Mathematical instability: this is more subtle. In Example 5

we see the problem is not with algorithms for solving linear

systems. It's deeper than that, because the Hilbert matrix

itself is extremely sensitive to change



BT 3.1: Basics of Numerical Analysis
Finite Precision Representation
Error Analysis

Convergence Concepts

De�nitions

We say that the sequence of numbers {xn}∞n=1
converges to x∗ if

limn→∞ |xn − x∗| = 0. We say the sequence of vectors {xn}∞n=1

converges to the vector x∗ if

lim
n→∞

‖xn − x∗‖ = 0

where ‖·‖ is some vector norm. If a sequence of iterates

x(1), x(2), . . . , x(n), . . . produced by some algorithm converges to the

desired point x∗, we say that the sequence converges with order

q (an integer greater than or equal to 1 called the order of

convergence) if∥∥∥x(n+1) − x∗
∥∥∥ = O

(∥∥∥x(n) − x∗
∥∥∥q) , n →∞.
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Examples:{
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2n

}∞
n=0

converges linearly to zero.{
1

22
n

}∞
n=0

converges quadratically to zero.
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Examples

Example

(Variant on Example 5 of NumericalAnalysisNotes) We �nd the

least integer n such that at least one entry of a certain system

Hnx = b has zero signi�cant digits relative to the answer. Here Hn
is the n-th Hilbert matrix and x is a vector whose i-th coordinate is

i .

> n = 4

> H = hilb(n)

> xtrue = (1:n)'

> b = H*xtrue

> xapprox = inv(H)*b

> % now repeat for larger n

> % also try H\b...any improvement?



Examples

Example

(Example 7 of NumericalAnalysisNotes) Let pn = 1/3n,
n = 0, 1, 2, . . .. This sequence obeys the rule pn+1 = pn−1 − 8

3
pn

with p0 = 1 and p1 = 1/3. Similarly, we see that pn+1 = 1

3
pn with

p0 = 1. Use Matlab to plot the sequence {pn}50n=0
directly, and

then using the above recursion algorithms with p0 and p1 given and

overlay the plot of those results. Repeat the plot with the last 11 of

the points.

>N=50

>p1 = (1/3).^(0:N);

>p2 = p1; p3 = p1;

>for n = 1:N,p2(n+1) = (1/3)*p2(n);end

>for n = 2:N,p3(n+1) = p3(n-1)-8/3*p3(n);end

>plot([p1',p2',p3'])

>plot([p1(N-11:N)',p2(N-11:N)',p3(N-11:N)'])
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