JDEP 384H: Numerical Methods in Business

Instructor: Thomas Shores Department of Mathematics

Lecture 2, January 11, 2007 110 Kaufmann Center

Outline

- 1 Linear Algebra
 - Dot Products and Norms
 - Eigenvalue Problems

The Arithmetic

Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be matrices. We define

• If A and B are of the same size, we can add them:

$$A + B = [a_{ij} + b_{ij}]$$

 If c is a scalar (i.e., number) we can scalar multiply a matrix A by it:

$$cA = [caij]$$

• If A is $m \times p$ and B is $p \times n$, we can matrix multiply them to get an $m \times n$ matrix AB given by

$$AB = \left[\sum_{k=1}^{p} a_{ik} b_{kj} \right]$$

The Arithmetic

Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be matrices. We define

• If A and B are of the same size, we can add them:

$$A + B = [a_{ij} + b_{ij}]$$

 If c is a scalar (i.e., number) we can scalar multiply a matrix A by it:

$$cA = [ca_{ij}]$$

• If A is $m \times p$ and B is $p \times n$, we can matrix multiply them to get an $m \times n$ matrix AB given by

$$AB = \left[\sum_{k=1}^{p} a_{ik} b_{kj}\right]$$

The Arithmetic

Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be matrices. We define

• If A and B are of the same size, we can add them:

$$A + B = [a_{ij} + b_{ij}]$$

 If c is a scalar (i.e., number) we can scalar multiply a matrix A by it:

$$cA = [ca_{ij}]$$

• If A is $m \times p$ and B is $p \times n$, we can matrix multiply them to get an $m \times n$ matrix AB given by

$$AB = \left[\sum_{k=1}^{p} a_{ik} b_{kj}\right]$$

Transposes

Transpose of $m \times n$ matrix $A = [a_{ij}]$ is $n \times m$ matrix

$$A^T = [a_{ji}],$$

e.g.
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$
.

Laws of transposes

$$(A+B)^{T} = A^{T} + B^{T}$$
$$(AB)^{T} = B^{T}A^{T}$$
$$(cA)^{T} = cA^{T}$$
$$(A^{T})^{T} = A$$

- Zero matrix $\mathbf{0}$ (or $\mathbf{0}_{m,n}$) is an $m \times n$ matrix whose every entry is the scalar 0, e.g., $\mathbf{0}_{3,2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.
- Identity matrix I (or I_n) is a square $n \times n$ matrix whose (i, i)th entries are 1 and all others 0, e.g., $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- Diagonal matrix D is square $n \times n$ matrix whose (i, i)th entries are nonzero and all others are zero, e.g., $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
- (Upper) triangular matrix U is square $n \times n$ whose (i,j)th entries are zero if i > j (further down than over), e.g.,

$$U = \left[\begin{array}{rrr} 2 & 3 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{array} \right].$$

- Zero matrix $\mathbf{0}$ (or $\mathbf{0}_{m,n}$) is an $m \times n$ matrix whose every entry is the scalar 0, e.g., $\mathbf{0}_{3,2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.
- Identity matrix I (or I_n) is a square $n \times n$ matrix whose (i,i)th entries are 1 and all others 0, e.g., $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- Diagonal matrix D is square $n \times n$ matrix whose (i, i)th entries are nonzero and all others are zero, e.g., $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
- (Upper) triangular matrix U is square $n \times n$ whose (i,j)th entries are zero if i > j (further down than over), e.g.,

$$U = \left[\begin{array}{rrr} 2 & 3 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{array} \right].$$

- Zero matrix $\mathbf{0}$ (or $\mathbf{0}_{m,n}$) is an $m \times n$ matrix whose every entry is the scalar 0, e.g., $\mathbf{0}_{3,2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.
- Identity matrix I (or I_n) is a square $n \times n$ matrix whose (i, i)th entries are 1 and all others 0, e.g., $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- Diagonal matrix D is square $n \times n$ matrix whose (i, i)th entries are nonzero and all others are zero, e.g., $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
- (Upper) triangular matrix U is square $n \times n$ whose (i,j)th entries are zero if i > j (further down than over), e.g.,

$$U = \left[\begin{array}{ccc} 2 & 3 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{array} \right].$$

- Zero matrix $\mathbf{0}$ (or $\mathbf{0}_{m,n}$) is an $m \times n$ matrix whose every entry is the scalar 0, e.g., $\mathbf{0}_{3,2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.
- Identity matrix I (or I_n) is a square $n \times n$ matrix whose (i, i)th entries are 1 and all others 0, e.g., $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- Diagonal matrix D is square $n \times n$ matrix whose (i, i)th entries are nonzero and all others are zero, e.g., $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
- (Upper) triangular matrix U is square $n \times n$ whose (i,j)th entries are zero if i > j (further down than over), e.g.,

$$U = \left[\begin{array}{rrr} 2 & 3 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{array} \right].$$

Matrix Powers

Given square $n \times n$ matrix A

Inverse of A

is (unique if it exists at all!) $n \times n$ matrix A^{-1} such that

$$AA^{-1} = I = A^{-1}A.$$

Note: Laws of inverses have same form as laws of transposes.

Positive exponent r:

$$A^r = \underbrace{A \cdot A \cdot \dots \cdot A}_{r \text{ times}}$$

Matrix Powers

Given square $n \times n$ matrix A

Inverse of A

is (unique if it exists at all!) $n \times n$ matrix A^{-1} such that

$$AA^{-1} = I = A^{-1}A.$$

Note: Laws of inverses have same form as laws of transposes.

Positive exponent r:

$$A^r = \underbrace{A \cdot A \cdot \dots \cdot A}_{r \text{ times}}$$

Negative exponent -r:

$$A^{-r} = \underbrace{A^{-1} \cdot A^{-1} \cdot \dots \cdot A^{-1}}_{r \text{ times}}$$

Zero exponent 0:

$$A^0 = 1.$$

Laws of Exponents

$$A^{r+s} = A^r A$$
$$(A^r)^s = A^{rs}$$

Negative exponent -r:

$$A^{-r} = \underbrace{A^{-1} \cdot A^{-1} \cdot \dots \cdot A^{-1}}_{r \text{ times}}$$

Zero exponent 0:

$$A^{0} = I$$
.

Laws of Exponents

$$A^{r+s} = A^r A^r$$
$$(A^r)^s = A^{rs}$$

Negative exponent -r:

$$A^{-r} = \underbrace{A^{-1} \cdot A^{-1} \cdot \dots \cdot A^{-1}}_{r \text{ times}}$$

Zero exponent 0:

$$A^0 = I$$
.

Laws of Exponents

$$A^{r+s} = A^r A^s$$
$$(A^r)^s = A^{rs}$$

Outline

- Linear Algebra
 - Dot Products and Norms
 - Eigenvalue Problems

Definitions

We know how to measure the size of a scalar quantity x: use |x|. Thus, we have a way of thinking about things like the *size* of an error.

Question: How do we measure the size of vectors or matrices? **Answer:** We use some kind of yardstick called a **norm** that assigns to each vector \mathbf{x} a non-negative number $\|\mathbf{x}\|$ subject to the following norm laws for arbitrary vectors \mathbf{x} , \mathbf{y} and scalar c:

- For $x \neq 0$, ||x|| > 0 and for x = 0, ||x|| = 0.
- $||c\mathbf{x}|| = |c| ||\mathbf{x}||.$
- $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.

Examples are to be found in our Linear Algebra Notes file: LinearAlgebraLecture-384H.pdf. Of course, Matlab knows all about the various norms we use on vectors or matrices.

Outline

- Linear Algebra
 - Dot Products and Norms
 - Eigenvalue Problems

Eigenthings

Another big idea that we'll make some use of later in the course:

Eigenvalue for square matrix A

is a scalar λ such that for some NONZERO vector \mathbf{x} , called an eigenvector corresponding to λ ,

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

And so??? Again, this is covered more thoroughly in our Linear Algebra Notes file: LinearAlgebraLecture-384H.pdf. The basic idea: eigenvalues are a set of numbers that tell us about the way multiplication by A stretches or shrinks vectors. Again, Matlab knows all about finding eigenvalues and eigenvectors.

An Example that Puts it All Together

Example

Suppose two toothpaste companies compete for customers in a fixed market in which each customer uses either Brand A or Brand B. Suppose also that a market analysis shows that the buying habits of the customers fit the following pattern in the quarters that were analyzed: each quarter (three-month period), 30% of A users will switch to B, while the rest stay with A. Moreover, 40% of B users will switch to A in a given quarter, while the remaining B users will stay with B. If we assume that this pattern does not vary from guarter to guarter, we have an example of what is called a Markov chain model. Express the data of this model in matrix-vector language.

Let's discuss this at the board and explore some ideas...

Example (continued)

Now we see that the state vectors and transition matrices

$$\mathbf{x}^{(k)} = \begin{bmatrix} a_k \\ b_k \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 0.7 & 0.4 \\ 0.3 & 0.6 \end{bmatrix}$$

play an important role. And indeed they do, for in light of our interpretation of a linear system as a matrix product, we see that the two equations can be written simply as $\mathbf{x}^{(1)} = A\mathbf{x}^{(0)}$, or more generally as $\mathbf{x}^{(k+1)} = A\mathbf{x}^{(k)}$. Any system of successive state vectors $\mathbf{x}^{(0)}, \mathbf{x}^{(1)} \dots$ generated by such a formula is called a (linear) discrete dynamical system. A little more calculation shows that

$$\mathbf{x}^{(2)} = A\mathbf{x}^{(1)} = A \cdot (A\mathbf{x}^{(0)}) = A^2\mathbf{x}^{(0)}$$

and in general,

$$\mathbf{x}^{(k)} = A\mathbf{x}^{(k-1)} = A^2\mathbf{x}^{(k-2)} = \cdots = A^k\mathbf{x}^{(0)}.$$

Example (continued)

```
O.K., let's go to Matlab:
A = [0.7 \ 0.4; \ 0.3, \ 0.6]
x = [1;0]
% cursor up the next line repeatedly for a pattern...
x = A * x
% now save your latest x
x = 0x
x = [0;1]
\% now do repetitions again and when done...
x - x0
% finally, try this:
[P, D] = eig(A)
v = P(:,1)
A*ν
v/sum(v)
```